Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Передача непрерывных сообщений по каналам связи




Так же как в случае передачи дискретных сообщений, при наличии шумов непрерывное сообщение после прохождения канала может быть принято как сообщение , причем для всех или некоторых моментов времени, где a и τ - константы, характеризующие ослабление и запаздывание сигнала, которые обычно несущественны с точки зрения определения количества информации, содержащегося в сообщении. Такое событие называют ошибкой.

Источник непрерывных сообщений удобно представить в виде непрерывной случайной величины X, которая после прохождения канала преобразуется в непрерывную случайную величину Y. Количество информации в непрерывных случайных величинах X и Y, при наличии шумов, можно определить предварительно проведя их дискретизацию по уровню (т.е. преобразовав их в дискретные случайные величины), а после определения содержащегося в них количества информации выполнив предельный переход, когда число уровней дискретизации стремится к бесконечности. Эта операция подробно рассмотрена в основах теории информации (§1.8.).

В результате выполнения операций дискретизации по уровню и предельного перехода можно сделать вывод: дифференциальные энтропии случайных непрерывных величин X и Y конечны, хотя их полная энтропия и стремится к бесконечности.

Аналогичным образом можно определить количество информации () случайной величины X, содержащейся в непрерывной случайной величине Y:

(3.3)

где – совместная плотность распределения вероятности величин X и Y;

плотность распределения случайных величин X и Y соответственно.

Из анализа формулы (3.3) можно сделать следующие выводы.

1. Если помехи столь велики, что случайная величина Y практически не зависит от случайной величины X, т.е. то

 

и, следовательно, количество получаемой информации (), вычисленное по формуле (3.3), равно нулю.

2. Если помеха (), представляемая в виде непрерывной случайной величины. носит аддитивный характер, то есть

,

причем, случайная величина X и помеха n независимы (что обычно выполняется), то

,  

где Pn(y - x) = Pn(n) – плотность распределения вероятности помехи.

В этом случае,

,  

где,

– дифференциальная энтропия сигнала Y; – дифференциальная энтропия шума n.  




Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 543 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2312 - | 2017 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.