Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Ошибка выборки




Так как признаки варьируют, то состав единиц, попавших в выборку, может не совпадать с составом единиц по всей совокупности. Это значит, что обобщающие показатели в выборке и w могут отличаться от значений этих характеристик в генеральной совокупности р и .

Возможные расхождения между характеристиками выборочной и генеральной совокупности измеряются средней ошибкой выборки .

В математической статистике доказывается, что значения средней ошибки выборки определяется по формуле:

Предполагается, что известна генеральная дисперсия . Но при выборочных обследованиях эти показатели не могут быть известны.

На практике для определения средней ошибки выборки обычно используются дисперсии выборочной совокупности . Эта замена основана на том, что при соблюдении принципа случайного отбора дисперсия выборки стремиться отобразить дисперсию в генеральной совокупности.

В математической статистике доказывается следующее отношение:

 

Если n достаточно велико, то 1.

Например, если n =100, то =1,01 и т.д.

При замене генеральной дисперсии дисперсией выборочной формула расчета средней ошибки примет вид:

При этом для показателя доли альтернативного признака дисперсия в выборочной совокупности определяется по формуле:

Для показателя средней величины дисперсия количественного признака в выборке определяется по формуле:

Формула для расчета ошибки применяется лишь при повторном методе отбора.

Сущность повторного отбора состоит в том, что каждая попавшая в выборку единица совокупности после фиксации значения должна быть возвращена в генеральную совокупность, где ей опять представляется равная возможность попасть в выборку.

На практике повторный отбор осуществляется редко. Обычно выборочное обследование проводится по схеме бесповторного отбора, при котором повторное попадание в выборку одних и тех же единиц исключено.

Посколько при бесповторном отборе численность генеральной совокупности в ходе выборки сокращается, то в формулу для расчета средней ошибки выборки включают дополнительный множитель 1- . Формула средней ошибки выборки примет вид: .

Полученное значение средней ошибки необходимо для установления возможного значения .

Одно из возможных значений средней определяется по формуле:

Итак, характеристика средней в генеральной совокупности отличается от средней на величину средней ошибки выборки .

Но такое суждение можно гарантировать не с абсолютной достоверностью, а лишь с определенной степенью вероятности.

В математической статистике доказывается, что пределы значений характеристик генеральной совокупности отличаются от характеристик выборочной совокупности лишь с вероятностью, которая определена числом 0,683.

Это означает, что в 683 случаях из 1000 генеральная средняя будет находиться в установленных пределах. В остальных 317 случаях они могут выйти за эти пределы. Вероятность можно повысить, если расширить пределы отклонений. Так, при удвоенном значении , вероятность достигает 0,954.

Если обозначить значение увеличения за t, то можно записать в общем виде:

Множитель t называется коэффициентом доверия. Известный русский математик А.М.Ляпунов дал выражение конкретных значений множителя t для различных степеней вероятности в виде функции:

На практике пользуются готовыми таблицами этой функции.

Крит. ошибка Вероятность
0,0 0,1 0,5 1,0 1,5 2,0 2,5 2,6 0,1 0,0797 0,3829 0,6827 0,8664 0,9545 0,9876 0,9907 0,9973 0,999937

 

Лишь с определенной степенью вероятности можно утверждать, что показатели генеральной совокупности и их отклонения не превысят величину t . Величина t называется предельной ошибкой выборки.

Тогда:

.

 





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 337 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Стремитесь не к успеху, а к ценностям, которые он дает © Альберт Эйнштейн
==> читать все изречения...

2207 - | 2160 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.