Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Аппроксимация и интерполяция в MathCad




Интерполяция использует значения некоторой функции, заданные в ряде точек, чтобы предсказать значения функции между ними. В MathCAD можно соединять точки данных прямыми линиями (линейная интерполяция) или соединять их отрезками кубического полинома (кубическая сплайн-интерполяция).

Функции интерполяции определяют кривую, точно проходящую через заданные точки. Из-за этого результат очень чувствителен к ошибкам данных. Кроме того, каждый элемент массива, который используется в любой из функций, описанных в этом разделе, содержит определенное значение. Поскольку MathCAD присваивает значение 0 любым элементам, которые явно не определены.

Для построения интерполяции в MathCAD имеются несколько встроенных функций, позволяющих "соединить" точки выборки данных (xi,yi) кривой разной степени гладкости. По определению, интерполяция означает построение функции D(х), аппроксимирующей зависимость у(х) в промежуточных точках. Поэтому интерполяцию еще по-другому называют аппроксимацией. В точках xi значения интерполяционной функции должны совпадать с исходными данными, т. е. A(xi)=y(xi).

Самый простой вид интерполяции - линейная, которая представляет искомую зависимость А(х) в виде ломаной линии. Интерполирующая функция А(х) состоит из отрезков прямых.

В MathCAD для построения линейной интерполяции служит встроенная функция

linterp(х, у, t),

где

х - вектор действительных данных аргумента;

у - вектор действительных данных значений того же размера;

t - значение аргумента, при котором вычисляется интерполирующая функция.

Элементы вектора х должны быть определены в порядке возрастания, т. е. Х1<Х2<Х3<... <XN.

Для проведения кубической сплайн-интерполяции MathCAD предлагается три встроенные функции (VX, VY – вектора узловых точек):

-cspline(VX, VY) – возвращает вектор вторых производных (VK) при приближении в опорных точках к кубическому полиному;

-pspline(VX, VY) – возвращает вектор вторых производных (VK) при приближении в опорных точках к параболической кривой;

-lspline(VX, VY) – возвращает вектор вторых производных (VK) при приближении в опорных точках к прямой.

Интерполирующая функция строится с помощью стандартной функции interp, имеющей следующий общий вид:

interp(VK,VX, VY, x),

где

VK – вектор вторых производных сплайна в опорных точках;

x – произвольная точка, в которой вычисляется значение интерполирующей функции.

MathCAD позволяет проводить линейную регрессию общего вида, в которой аппроксимирующая функция задается линейной комбинацией функций, причем сами функции fi(x) могут быть нелинейными:

 
 


(1.3)

Линейная регрессия общего вида реализуется с помощью функции linfit:

linfit(VX, VY, F),

где

VX, VY – координаты исходных точек;

F - вектор, содержащий функции fi(x), записанные в символьном виде.

Функция linfit еще называется функцией аппроксимации по методу наименьших квадратов.

Результатом работы функцииlinfit является вектор коэффициентов К, при котором среднеквадратичная погрешность приближения исходных точек с координатами VX, VY, минимальна.

Вектор VX должен быть возрастающим.

Для выполнения в MathCAD нелинейной регрессии общего вида необходимо определить параметры произвольной аппроксимирующей функции, при которой обеспечивается минимальная среднеквадратичная ошибка.

Для этого используется встроенная функцияgenfit,имеющая следующий общий вид:

genfit (VX,VY,VS,F),

где

VS -вектор, который задает начальные приближения элементов вектора K, рассчитываемых итерационным способом;

F -вектор, который содержит искомую функцию и ее частные производные по параметрам Ki в аналитическом виде:

 
 


 

(1.4)

 

 





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 1343 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

2294 - | 2065 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.