Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Термодинамические процессы




Изохорный процесс, процесс, протекающий при постоянном объеме. Уравнение процесса v = const. Основные формулы для расчета изохорного процесса с идеальным газом:

 

; ; ; ; l = 0; ;

Изобарный процесс, процесс, протекающий при постоянном давлении. Уравнение процесса р = const. Основные формулы для расчета изобарного процесса с идеальным газом:

; ; ; ; ; lp = 0;


Изотермический процесс, процесс, протекающий при постоянной температуре. Уравнение процесса Т = const. Основные формулы для расчета изотермического процесса с идеальным газом:

; ; ; ; ;


Адиабатный процесс, процесс, протекающий без теплообмена с окружающей средой (q = 0, dq = 0). Равновесные адиабатные процессы протекают при постоянной энтропии (ds = 0,  s = const). Уравнение адиабатного процесса , где k – показатель адиабаты. Для идеального газа  и принимает следующие значения: для одноатомных газов k = 1,67, для двухатомных газов k = 1,4, для трёх- и многоатомных газов k = 1,29. Основные формулы для расчета адиабатного процесса с идеальным газом:

q = 0; s = const; ; ; ; ;

 ; ;        l = -D u; lp = -D h = h 1h 2


Политропный процесс, процесс, протекающий с постоянной теплоемкостью сп = const. Уравнение политропного процесса , где п – показатель политропы. Для идеального газа . Изохорный, изобарный, изотермический и адиабатный процесс являются частным случаем политропного процесса. Основные формулы для расчета политропного процесса с идеальным газом:

; ; ; ; ;

; ;

 ; ;

 

Процесс п cn
Изохорный ± ¥ cv
Изобарный 0 cp
Изотермический 1 ¥
Адиабатный k 0

Качественные особенности реальных газов. Исследования свойств реальных газов в широком диапазоне термо­динамических параметров показали, что свойства таких газов откло­няются от законов, справедливых для идеальных газов, тем значи­тельнее, чем выше их плотность. Молекулы реальных газов в отличие от идеальных газов имеют оп­ределенные (конечные) размеры, и между ними существуют силы меж­молекулярного взаимодействия. При определенных условиях эти си­лы могут приводить к ассоциации или диссоциации молекул, что су­щественно отражается на свойствах газа. При малых межмолекуляр­ных расстояниях внутренние силы могут действовать как силы оттал­кивания и создавать внутреннее давление. При значительных расстоя­ниях между молекулами действуют главным образом силы взаим­ного притяжения. В связи с этим поведение термических и калорических свойств реальных газов значительно отличаются от идеальных. Например, коэффициент сжимаемости  для идеальных газов равен единице, а для реальных газов имеет сложную зависимость от давления и температуры.

В отличие от теплоем­кости идеальных газов теплоемкости ср и cv реальных газов зависят не только от температуры, но и от давления. Эти зависимости имеют сложный характер. В области низких давлений зависимости изохорной и изобарной теплоемкостей от температуры близки к линейным. При давлениях ниже критического теплоемкости ср и cv воз­растают с понижением температуры и приближением к состоя­нию сжижения, что связано с процессом ассоциации молекул. В области высоких температур влияние температуры оказыва­ется незначительным. Повышение давления в этой области при­водит к увеличению теплоемкости. В области сверхкритических давлений изобары теплоемкости проходят через максимум, который с повышением давления смещается в сторону высоких температур. Величина ср (или cv)в точке максимума увеличивается с приближением к ркр (рис. 8.7, б). В критической точке изобарная теплоемкость равна бесконечности.

Уравнение состояния реальных газов. Для реальных газов предложено много уравнений состояния, но ни одно из них не обладает достаточной общностью и точ­ностью.

Физические особенности реальных газов качественно хорошо отражаются уравнением Ван-дер-Ваальса. Оно же является и наиболее простым, единым для жидкой и газовой фаз, терми­ческим уравнением состояния. Ван-дер-Ваальс учел влияние сил взаимодействия молекул и влияние их объема путем введения поправочных факторов в уравнение состояния идеального газа. Это уравнение, полученное на основе, главным образом, умозрительных качественных заключений имеет вид , где a, b – константы, которые наряду с газовой постоянной характеризуют индивидуальные свойства вещества. Если сравнить это уравнение с уравнением Клапейрона pv = RT, то видно, что вместо р в нем фигурирует , а вместо v стоит . Согласно уравнению Клапейрона при стремлении давления к бесконечности удельный объем стремится к нулю, а из уравнения Ван-дер-Ваальса следует, что в этом случае v ® b. Следовательно, величину b можно интерпретировать как объем занимаемый собственно молекулами. Член  учитывает взаимодействие молекул газа. Эту величину можно рассматривать как внутреннее давление в газе. Константы a и b могут быть вычислены через критические параметры вещества , . В этих выражениях Ткр – критическая температура, ркр – критическое давление, v кр – критический удельный объем. Уравнение Ван-дер-Ваальса только качественно отражает поведение веществ и для точных расчетов не пригодно.

Гетерогенная система, система, состоящая из различных по своим свойствам частей, разграниченных поверхностями раздела (лед-вода, вода-пар).

Гомогенная система, система, между любыми частями которой нет поверхностей раздела (пар, вода, лед).

Фаза, гомогенная часть гетерогенной системы, ограниченная поверхностью раздела.

Фазовый переход, переход вещества из одного фазового состояния в другое.

Парообразование, переход вещества из жидкого состояния в газообразное (пар).

Испарение, парообразование, происходящее только на свободной поверхности жидкости при любой температуре.

Кипение, парообразование, происходящее во всем объеме жидкости в результате подвода теплоты при температуре кипения.

Конденсация, переход вещества из газообразного состояния в жидкое в результате отвода теплоты при температуре кипения.

Сублимация, переход вещества из твердого состояния в газообразное в результате подвода теплоты при температуре сублимации. Для воды этот процесс возможен при давлениях ниже давления в тройной точке (< 610,8 Па). Процесс перехода вещества из газообразного состояния в твердое, называют десублимацией.

Плавление, переход вещества из твердого состояния в жидкое в результате подвода теплоты при температуре плавления. Процесс перехода вещества из жидкого состояния в твердое, называют затвердеванием (кристаллизацией).

Температура фазового перехода, температура вещества в процессе равновесного фазового перехода при постоянном давлении.

Температура кипения (насыщения), температура вещества в процессе равновесного фазового перехода из жидкого состояния в газообразное (пар) при постоянном давлении. Обозначают tн или ts. При этой же температуре происходит конденсация.

Теплота фазового перехода, количество теплоты, которое необходимо подвести или отвести при равновесном изобарно-изотермическом переходе вещества из одной фазы в другую.

Теплота парообразования (удельная), т еплота, затраченная на превращение 1 кг кипящей жидкости в сухой насыщенный пар при постоянном давлении. Обозначают r, Дж/кг.

Тройная точка, точка на термодинамической диаграмме, соответствующая состоянию, в котором находятся в равновесии три фазы вещества: твердая, жидкая, газообразная. Параметры состояния в тройной точке у различных веществ различны. Для воды: р 0 = 610,8 Па, t 0 = 0,01 оС, v 0 = 0,001 м3/кг.

Критическая точка, точка на термодинамической диаграмме, в которой исчезает различие между жидкой и газообразной фазами. Состояние вещества в этом случае называют критическим состоянием. Параметры состояния в критической точке у различных веществ различны. Для воды: рк = 22,115 МПа, tк = 374,12 оС, vк = 3,147 м3/кг.

Насыщенный пар, пар, находящийся в равновесии с жидкой фазой.


Сухой насыщенный пар, пар, в котором при температуре кипения (насыщения) отсутствуют взвешенные частицы жидкой фазы.

Влажный насыщенный пар, насыщенный пар, в котором содержатся взвешенные частицы жидкой фазы.

Степень сухости пара, массовая доля сухого пара во влажном насыщенном паре. Обозначают х. Степень сухости может изменяться от 0 до 1. При х = 0 – кипящая жидкость, при х = 1 - сухой насыщенный пар.

Перегретый пар, пар, температура которого выше температуры кипения при одинаковом давлении.

Фазовая диаграмма, диаграмма, на которой нанесены линии фазовых переходов. На рисунке представлена фазовая диаграмма в координатах р, Т. Линия ОВ - кривая сублимации (десублимации) вещества, линия ОА - кривая плавления (затвердевания), линия ОК - кривая насыщения (кипения или конденсации). Точка О - тройная точка. Точка К - критическая точка.

На практике чаще применяют фазовые диаграммы в координатах p, v, T, s, h, s (см. рисунок). На этих диаграммах представляют область некипящей жидкости (ж), влажного насыщенного пара (в.п) и перегретого пара (п.п). На линии, соответствующей степени сухости х = 0, находятся состояния кипящей жидкости. Эту линию называют нижней пограничной кривой. На линии, соответствующей степени сухости х = 1, находятся состояния сухого насыщенного пара. Эту линию называют верхней пограничной кривой.   

Основные параметры воды, параметры, необходимые для проведения термодинамических расчетов: давление, температура, удельный объем, энтальпия, энтропия. Поскольку вода является реальным веществом, сведения о параметрах и функциях состояния получают экспериментальным путем, а затем представляют в виде таблиц, диаграмм (Ts-, hs -диаграммы) и уравнений состояния.

Начало отсчета энтальпии и энтропии воды - состояние в тройной точке (h 0 = 0, s 0 = 0). Параметры, относящиеся к состоянию кипящей жидкости, обозначают индексом «'», например, v ', h ', s '. Параметры, относящиеся к состоянию сухого насыщенного пара, обозначают индексом «"», например, v ", h ", s ". Параметры влажного насыщенного пара определяют с помощью фазовых диаграмм, или рассчитывают по правилу аддитивности: v = v " x + v '(1 – x),

h = h " x + h '(1 – x) = h ' + rx, s = s " x + s '(1 – x) = s ' + rx / T н.  

При невысоких и средних давлениях (до 10 МПа), функции состояния можно определять расчетным путем (с достаточной для технических расчетов точностью). Необходимые формулы представлены в таблице, где cрж» 4,19 кДж/(кг×К) – изобарная теплоемкость жидкой воды; cрп - средняя изобарная теплоемкость перегретого пара в интервале температур от температуры кипения до данной температуры.

  Таблица –­ Расчет функций состояния воды

Состояние воды Энтальпия Энтропия Внутренняя энергия
Некипящая жидкость h = cрж × t u = h – pv
Кипящая жидкость h ' = cрж × tн u ' = h ' – pv '
Сухой насыщенный пар h " = h ' + r u " = h " – pv "
Перегретый пар u = h – pv

 

 

 

Процесс получения пара, процесс 1-2-3-4, представленный на рисунке и протекающий с подводом теплоты. В технических устройствах этот процесс рассматривают как изобарный, состоящий из трех частей: 1-2 - изобарный подогрев воды до температуры кипения; 2-3 - изобарно-изотермическое парообразование; 3-4 - изобарный перегрев пара.

Обратный процесс (4-3-2-1) протекает с отводом теплоты и заключается в изобарном охлаждении перегретого пара до температуры кипения (4-3), изобарно-изотермической конденсации (3-2) и изобарном охлаждении жидкости ниже температуры кипения (2-1).

Термодинамические процессы с водяным паром, изохорный, изобарный, изотермический и адиабатный процесс.


Изохорный процесс.

Процесс 1-2 – подвод теплоты.

Работа изменения объема: l = 0. Располагаемая работа: lp = v (p 1p 2).

 

Количество теплоты: q = D u = D h + lp = (h 2h 1) + lp.

Изобарный процесс.

Процесс 1-2 – подвод теплоты.

Работа изменения объема: l = p (v 2v 1). Располагаемая работа: lp = 0.

Количество теплоты: q = D h = h 2h 1 = D u + l.

 

Изотермический процесс.

1-2 – подвод теплоты.

Работа изменения объема: l = q – D u. Располагаемая работа: lp = q – D h.

Количество теплоты: q = T (s 2s 1) = D u + l = D h + lp.

Изменение внутренней энергии: D u = (h 2h 1) – (p 2 v 2p 1 v 1).

 

 

Адиабатный процесс.

Процесс 1-2 – расширение.

Работа изменения объема: l = -D u. Располагаемая работа: lp = -D h = h 1h 2.

Количество теплоты: q = 0. Изменение внутренней энергии: D u = (h 2h 1) – (p 2 v 2p 1 v 1).

Уравнение Клапейрона-Клаузиуса, уравнение, устанавливающее связь между величинами, характеризующими процесс перехода вещества из одного агрегатного состояния в другое. Так для процесса парообразования (конденсации) уравнение Клапейрона-Клаузиуса имеет вид: , где ­– наклон линии фазового перехода в координатах р, Т.





Поделиться с друзьями:


Дата добавления: 2018-11-12; Мы поможем в написании ваших работ!; просмотров: 209 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2438 - | 2357 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.