Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Коэффициент теплоотдачи. Дифференциальные уравнения теплообмена




В процессе конвективного переноса теплоты характер течения жидкости имеет очень большое значение, так как им определяется механизм теплоотдачи. Процесс переноса теплоты на границе с поверхностью канала может быть выражен законом Фурье

dQ = –l dF (dt / dn) n = 0,

где п — нормаль к поверхности тела.   

Это же количество теплоты можно выразить уравнением Ньютона-Рихмана

dQ = a dF (t ж – t с).

Приравнивая эти уравнения, получим

–l dF (dt / dn) n = 0 = aD t,или a= –(l/D t)(dt / dn) n = 0.

Это дифференциальное уравнение описывает процесс теплообме­на на поверхности канала   (п = 0).

По своему физическому характеру конвективный теплообмен яв­ляется сложным процессом и зависит от большого числа фак­торов, определяющих процесс теплоотдачи. Коэффициент теплоотдачи a характеризует интенсивность теплообмена между жидкостью и поверх­ностью канала. В общем случае коэффициент теплоотдачи является функцией физических параметров жидкости, характера течения жид­кости, скорости движения жидкости, формы и размеров тела и др.

Отсюда коэффициент теплоотдачи

a = f (w, l, m, r, с, X, t ж, t с, D t, Ф, l 1, l 2, l 3...),

где X – характер движения жидкости (свободное или вынужденное движение);

Ф – форма стенки;

l 1, l 2, l 3 – размеры поверхности.

Уравнение показывает, что коэффициент теплоотдачи – величина сложная и для ее определения невозможно дать общую фор­мулу. Обычно для определения a приходится прибегать к опытным исследованиям.

Применяя общие законы физики, можно составить дифференциаль­ные уравнения для конвективного теплообмена, учитывающие как теп­ловые, так и динамические явления в любом процессе.

Система дифференциальных уравнений состоит из уравнений энер­гии (или теплопроводности), теплообмена, движения и сплошности.

Дифференциальное уравнение энергии ус­танавливает связь между пространственным и временным изменением температуры в любой точке движущейся жидкости:

,

где a = l/(C ×r) – коэффициент температуропроводности;

– оператор Лапласа.                            \.

Если wx = wy = wz = 0, уравнение энергии переходит в уравне­ние теплопроводности для твердых тел (без внутренних источников теплоты).

Дифференциальное уравнение теплооб­мена выражает условия теплообмена на границе твердого тела и жидкости:

a= –(l/D t)(dt / dn) n = 0

Дифференциальное уравнение движения вязкой несжимаемой жидкости представлено уравнением Навье-Стокса:

для оси х

.

Аналогично можно записать уравнения для оси у и оси z.

Это уравнение справедливо для ламинарного и турбулентного движений. В последнем случае w представляет собой действительную (мгновенную) скорость, равную сумме средней и пульсационной скоростей.

Дифференциальное уравнение сплошности или неразрывности, для сжимаемых жидкостей имеет вид

.

Для несжимаемых жидкостей при r = const уравнение сплошности принимает вид

.

 





Поделиться с друзьями:


Дата добавления: 2018-11-12; Мы поможем в написании ваших работ!; просмотров: 171 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2463 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.