Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Amp; 2. Тбпловая работа и отопление мартеновских печей




Мартеновскую плавку можно условно разделить на несколько периодов: 1)заправка печи; 2)завалка шихты; 3)плавле­ние шихты; 4) кипение ванны (доводка), раскисление и ле­гирование; 5) выпуск плавки.

Во время периода заправки (обычно 15—20 мин) печь ос­матривают и устраняют замеченные дефекты. Затем через ок­на с помощью специальных завалочных машин заваливают твердую шихту: стальной скрап, железную руду, а также твердый чугун или заливают жидкий чугун.

При достижении температуры 1450—1500 °С (в зависимости от состава шихты) наступает момент расплавления шихты, затем металл постепенно нагревается до необходимой темпе­ратуры, а сталевар проводит те или иные технологические операции, добиваясь получения стали нужного состава, после чего разделывает сталевыпускное отверстие и выпус­кает плавку.


 


354


355


В течение всех этих периодов в печь подают топливо. Под действием тепла факела нагреваются кладка печи и ших­та. Окодо 85—90 % тепла от факела к ванне передается из­лучением и 5—15 % — конвекцией.

В соответствии с известной формулой Стефана—Больцмана, количество тепла Q, переданного холодной шихте излуче­нием, может быть выражено следующей формулой:

Q = 5en[(rrop/l00)4 - СГХОЛ/100)4],

где 5 — коэффициент, учитывающий оптические свойства кладки и форму рабочего пространства; еп — степень черно­ты пламени; Ггор и Гхол — температуры факела (горячего) и шихты (холодной), К.

Таким образом, чем выше температура факела и степень черноты пламени, тем интенсивнее нагревается шихта и тем меньше времени затрачивается на плавку. Повышения темпе­ратуры факела достигают улучшением степени нагрева возду­ха и газа в регенераторах и обогащением воздуха кислоро­дом; повышения степени черноты факела — карбюрацией пла­мени.

Двухатомные газы (02, N2, Нг) практически лучепрозрач-ны для волн всех длин, трехатомные (С02, Н20, S02) обла­дают некоторой излучательной способностью, однако степень черноты пламени горячего чистого газа составляет всего 0,1—0,2. Чтобы повысить степень черноты пламени, необхо­димо обеспечить в нем содержание твердых "черных" части­чек (в первую очередь углеродистых).

Углеродистые частицы могут появиться в пламени в ре­зультате разложения углеводородов: СХИУ = хСгв + уНгаз, а также при добавке к подаваемому в печь газу различных жидких или твердых топлив, богатых углеродом и сложными углеводородами (мазут, каменноугольный пек). Практически степень черноты пламени еп не должна быть ниже 0,5; в большинстве случаев она составляет 0,55—0,75.

При одной и той же характеристике факела разность (7"ГОР/100)4—(Гхол/100)4 тем выше, чем холоднее шихта. Наиболее низкая температура шихты наблюдается во время завалки и в начале периода плавления. Степень черноты холодной твердой шихты близка к единице (0,92—0,95). Поэтому в этот период передача тепла от факела к шихте максимальна, она  настолько велика, что практически нет

356


опасности оплавить огнеупоры, и в печь подают максималь­ное количество топлива.

По мере нагрева шихты температура ее Тхол возрастает, шихта раскаляется, покрывается шлаком и сама начинает отражать тепловые лучи, в результате чего условия погло­щения тепла шихтой ухудшаются. Во избежание нагрева и оплавления огнеупора необходимо уменьшать подачу топлива (рис. 108).

Таким образом, подача топлива по ходу плавки меняется. Максимальной величины расход топлива достигает во время завалки и в начале периода плавления. Подаваемое в это время количество тепла называют максимальной нагрузкой. По мере прогрева шихты подачу топлива уменьшают и тепло­вая нагрузка падает. Частное от деления общего расхода тепла топлива для одной плавки на время плавки называют средней тепловой нагрузкой или тепловой мощностью печи, т.е.

Расход топлива на плавку, 10* кДж

Продолжительность плавки, ч

» Тепловая мощность, 106 кДж/ч.

Средняя тепловая нагрузка в зависимости от тоннажа пе­чи возрастает от 23,2 для 125-т печи до 69,9 МВт (252 кДж/ч) для 900-т печи. Максимальная тепловая нагруз­ка на 20—40 % выше средней.

Для характеристики топлива и условий его сжигания при­меняют коэффициент использования топлива (к.и.т.)

т? = (GT - Gyx)/ GT,

где QT теплота сгорания топлива; Qyx — тепло уходящих газов.

Продолжительность плавки 357

Рис. 108. Схема изменения тепловой нагрузки но ходу плавки в мартеновской печи: Л — начало завалки и прогрева твердой ших­ты; Б — начало заливки жидкого чугуна; В — полное расплавление шихты; Г — выпуск


Для мартеновских печей к.и.т. составляет 0,50—0,55.

Удельный расход тепла (расход тепла топлива на 1т стали) зависит от многих факторов, и прежде всего от емкости печи. По мере увеличения садки печи уменьшаются относительные потери тепла на нагрев футеровки, на отвод тепла с охлаждающей водой и другие потери; в результате удельный расход тепла снижается с 840 для 10—20-т печей до 210МДж/т для 900-т печей.

Топливо

Применяемое для отопления мартеновских печей топливо раз­личают: а) по физическому состоянию: жидкое (мазут, смо­ла), газообразное (доменный, коксовый, природный газы), твердое (каменноугольная пыль); б) по теплоте сгорания: низкокалорийное (доменный газ, теплота сгорания 3,78-4,2 МДж/м3) и высококалорийное (мазут 39,9-42 МДж/кг, коксовый газ 16,8-18,0 МДж/м3, сухой природный газ типа саратовского 33,6-35,2 МДж/м3, жирный природный газ типа грозненского 63 МДж/м3).

Для успешного проведения мартеновской плавки недоста­точно подать в печь определенное количество тепла, необ­ходимо еще, чтобы температура факела при сгорании топлива была достаточно высокой. Температура поверхности шлака в конце плавки составляет примерно 1650 °С. Чтобы тепло пламени достаточно интенсивно передавалось металлу, тем­пература факела должна быть не ниже 1750 °С.

Практическая температура факела 'Пр = **кал> где 'кал- калориметрическая температура горения топлива; к — пирометрический коэффициент, зависящий от отдачи тепла нагреваемым предметом, от потерь тепла в окружающую среду и от степени диссоциации продуктов сгорания.

Величина коэффициента к близка к 0,7. Следовательно, калориметрическая температура горения топлива в марте­новской печи должна быть не ниже 2400 °С (1700:0,7» «2430°С). При этом следует иметь в виду, что для обес­печения полноты сгорания воздух для сжигания топлива по­дают с некоторым избытком, равным обычно 10—20 % (так называемый "коэффициент избытка воздуха" а = 1,1+1,2).

Калориметрическая температура горения доменного газа низка (~2250°С), температура факела нагретого доменного газа в горячем воздухе ниже 1600 °С, следовательно,


нагреть ванну до нужной температуры при отоплении марте­новской печи одним только доменным газом невозможно. По­высить температуру можно, заменяя воздух кислородом.

Обычно доменный газ применяют в качестве топлива для мартеновских печей только в смеси с другими, более кало­рийными видами топлива (коксовым газом, мазутом, природ­ным газом).

Наиболее распространены в качестве топлива для марте­новских печей природный газ, мазут и смешанный газ (смесь коксового и доменного газов).

Смешанный газ содержит, %: 16-20 СО, 7-9 С02, 20-30 Н2, 8-12 СН4, 30-40 N2; состав газа и его теплота сгора­ния меняются в зависимости от соотношения долей, входящих в состав смеси доменного и коксового газов. Для улучшения светимости факела к смешанному газу обычно добавляют небольшое количество карбюратора (мазута или смолы). Калориметрическая температура горения нагретого смешанно­го газа в нагретом воздухе составляет около 2600 °С, что обеспечивает получение высокотемпературного факела.

Смешанным газом отапливают печи заводов, имеющих в своем составе доменный и коксохимический цехи. В тех слу­чаях, когда доменного и коксового газов для отопления всех мартеновских и других печей завода не хватает, используют природный газ и мазут.

Природным газом или мазутом отапливают также печи за­водов, в составе которых нет доменных и коксохимических цехов. Мазут — первоклассное топливо для мартеновских пе­чей, он дает яркосветящийся настильный высокотемператур­ный факел (калориметрическая температура горения мазута 2650 °С). Обычно мазут содержит 83-85% С и 10-11% Н2, остальное — влага, зола и сера. Содержание серы в марте­новских мазутах колеблется в пределах 0,5—0,7 %. Сернис­тые мазуты (3 % S и более) в мартеновском производстве применяют редко, так как сера из топлива переходит в ме­талл и ухудшает его качество.

Перед подачей к форсункам мазут нагревают до 70—80 °С. Распыление мазута осуществляют сжатым воздухом, подавае­мым под избыточным давлением 0,5—0,7 МПа, или перегретым до 300—350 °С паром под избыточным давлением 1,1-1,2 МПа.

По мере развития газовой промышленности большое число печей в нашей стране было переведено на отопление природ-


 


358


359


2. Особенности технологии мартеновской плавки

Технология плавки стали в мартеновских печах имеет ряд особенностей:

1. Окислительный характер газовой фазы печи. Через ра­бочее пространство мартеновской печи над ванной проходит огромное количество газа. Если учесть, например, что на 1 т стали в 500-т печи расходуется ~ 4200 МДж, то при отоплении печи смесью коксового и доменного газов с теп­лотой сгорания 8,4 МДж/м3 потребуется На плавку газа 500 ■ 4200/8,4 = 250000 м3.         На        1 м3       газа при а = 1,15*1,20 расходуется ~ 2 м3 воздуха и образуется ~ 3 м3 продуктов сгорания. Следовательно, за плавку через рабочее пространство печи пройдет 250000 • 3 = 750000 м3 продуктов сгорания. Продолжительность плавки в 500-т печи составляет 7—10 ч, т.е. из рабочего пространства печи вы­летает за 1ч 75000—100000 м3 продуктов сгорания (расчет ведут на объем газов в холодном состоянии). Если учесть расширение газов при нагреве (до 1700 °С примерно в семь раз), то можно представить, с какой скоростью печные газы проносятся над ванной. Газы имеют в своем составе угле-родсодержащие и водородсодержащие соединения (СО, различ­ные углеводороды, сажистые частички углерода, некоторое количество С02, а также и 02, так как воздух Для горения подают с избытком). При горении углерод- и водородсодер-жащих соединений образуются С02 и Н20. Следовательно, продукты сгорания любого топлива содержат кислород, окис­лительные газы С02 и Н20 и некоторое количество азота N2. Таким образом, характер атмосферы мартеновской печи во все периоды плавки окислительный, и парциальное давление кислорода в атмосфере почти всегда велико. За плавку ван­на поглощает 1—3 % кислорода от массы металла. Этот кис­лород расходуется в основном на окисление примесей, часть его расходуется на окисление железа.

2. Тепло к ванне поступает сверху, поэтому температура шлака выше, чем металла, и по глубине ванны имеет место различие температур металла. Толщина шлака в мартеновских печах колеблется в пределах от 50 до 500 мм, глубина ван­ны металла — от 500 до 1500 мм (в зависимости от вмести­мости конструкции печи). Выравниванию температуры по глу­бине ванны способствуют пузыри СО, выделяющиеся в резуль-


тате окисления углерода, и, как следствие, кипение ванны. При отсутствии кипения мог бы происходить перегрев верх­них слоев ванны и недостаточный нагрев нижних. Однако, несмотря на кипение ванны, некоторый перепад температур по глубине ванны сохраняется, особенно между шлаком и металлом. В начале кипения этот перепад составляет 70—100 °С, а в конце 20—50 °С. По длине печи температура металла также неодинакова. Под факелом температура метал­ла несколько выше, чем у отводящей головки.

3. Участие пода печи в протекающих процессах. В отли­чие от плавки в конвертерах, которая продолжается всего 15—30 мин, плавка в мартеновской печи продолжается не­сколько часов, поэтому влияние взаимодействия металла с подиной оказывается очень ощутимым. Подробно этот вопрос будет рассмотрен ниже.

4. Четвертая особенность технологии мартеновской плав­ки заключается в том, что жидкий металл все время нахо­дится под слоем шлака (шлак примерно вдвое легче метал­ла). Практически все вводимые в печь добавки попадают на шлак или проходят в металл через шлак. Кислород из атмо­сферы печи в металл переходит также через шлак. Если учесть, что тепло от факела к металлу также передается через шлак, то становится понятной огромная роль шлака в мартеновском процессе. По существу руководство ходом плавки заключается в том, что меняют состав, температуру и консистенцию шлака и таким образом добиваются получения металла нужного состава и качества.

3. Шлакообразование и роль шлака в мартеновском процессе

Основные источники образования шлака следующие:

1) продукты окисления примесей чугуна и скрапа — крем­ния, марганца, фосфора, хрома и др., т.е. Si02, MnO, Р205, Сг2Оэ и др.;

2) продукты разъедания футеровки агрегата — MgO и СаО в основных печах и Si02 в кислых;

3) загрязнения, внесенные шихтой (песок, глина и др.), т.е. Si02, А12Оэ; во время заливки жидкого чугуна, хра­нившегося в миксере, в ковш, а затем в мартеновскую печь попадает некоторое количество миксерного шлака, состояще-


 


362


363


го (%) из 18-35 SiOz; 2,5-5,0 Al203; 3,0-7,0 СаО; 7-2,5 FeO; 17-40 MnO; 7-32 MnS;

4) ржавчина, покрывающая скрап, т.е. Fe304, Fe203, FeO;

5) добавочные материалы (известняк, известь, железная руда, агломерат, марганцевая руда и др.) — СаО, Fe203, MnO, Si02, А1203 и др.

Таким образом, основная масса мартеновского шлака сос­тоит из следующих окислов: СаО, Si02, FeO, Fe203, MnO, A1203, MgO, причем СаО, MgO, FeO, MnO- основные окислы, a Si02, P2Os — кислотные.

В каждом конкретном случае приходится учитывать боль­
шую или меньшую степень влияния того или иного из пере­
численных окислов. Для характеристики состава основного
шлака пользуются величиной отношения концентраций в нем
основных окислов к кислотным: чаще используют более прос­
тое выражение (CaO)/(Si02). Эту величину называют основ­
ностью   шлака.    Шлаки,    в    которых   величины
(CaO)/(Si02) < 1,5, называют низкоосновными, для шлаков
средней основности (CaO)/(Si02) = 1,6*2,5 и для высоко­
основных шлаков (CaO)/(Si02) > 2,5. Кислый шлак более чем
наполовину состоит из кислотных окислов (кремнезема).
Характеристикой кислых шлаков может служить отношение
(Si02)/(FeO) + (MnO) или (Si02)/(FeO) + (MnO) + (СаО),
которое называют кислотностью шлака.

Как уже отмечалось, металл в процессе плавки взаимо­действует со шлаком; количество и состав шлака, темпера­тура, жидкоподвижность и другие его параметры оказывают огромное, а во многих случаях и решающее влияние на про­цесс плавки и качество металла. В мартеновской печи шлак должен обеспечивать в одни периоды плавки интенсивный переход кислорода из атмосферы печи через шлак в металл, а в другие- предохранять металл от окисления. Одновре­менно шлак должен препятствовать процессам насыщения ме­талла азотом и водородом.

Удаление из металла вредных примесей — серы и фосфора (процессы, протекающие в значительной степени на границе раздела шлак—металл) — заключается в переводе этих эле­ментов в шлак и создании условий, препятствующих их обратному переходу из шлака в металл. Изменяя состав шла­ка, его количество и температуру, можно добиться увеличе-

364


иия или уменьшения содержания в металле марганца, крем­ния, хрома и других элементов.





Поделиться с друзьями:


Дата добавления: 2018-11-10; Мы поможем в написании ваших работ!; просмотров: 195 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2456 - | 2270 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.