Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Процессы с аргоно- и парокислородным дутьем




В последние годы получает распространение выплавка в кон­вертерах низкоуглеродистых и, в частности, низкоуглеро­дистых коррозионностойких и электротехнических сталей путем продувки смесями аргон—кислород и пар—кислород. В 1990 г. процессом аргоно-кислородной продувки, получивше­го название АОД-процесса, было произведено более половины мировой выплавки коррозионностойких сталей. Широкое расп­ространение этого процесса связано с тем, что он позво-


 


334


335


ляет получать хромоникелевую коррозионностойкую сталь с очень низким содержанием углерода при использовании де­шевого высокоуглеродистого феррохрома, в то время как традиционный способ выплавки этих сталей в электропечах требовал применения дорогостоящего низкоуглеродистого феррохрома.

Суть процесса АОД сводится к тому, что расплав, содер­жащий высокоуглеродистый феррохром, обезуглероживают в конвертере, вдувая аргоно-кислородную смесь; при этом достигается очень низкая (0,03-0,01 %) концентрация угле­рода в металле без значительного окисления железа и хро­ма, что происходило бы при продувке одним кислородом. Причина этого в том, что в зонах протекания реакции [С] +1/202 = СО ее продукт — СО разбавляется аргоном, т.е. снижается парциальное давление СО, благодаря чему равновесие реакции сдвигается вправо, в сторону более полного окисления углерода. Кроме того, для уменьшения окисления хрома процесс ведут при высокой (1700—1720 °С) температуре (поскольку окисление хрома 2[Сг] +1,502 = = Сг203 идет с выделением тепла, повышение температуры вызывает сдвиг равновесия реакции влево).

Распространенный вариант технологии выплавки хромони-келевой коррозионностойкой стали процессом АОД заключает­ся в следующем. В электродуговой печи получают из сталь­ного лома, углеродистого феррохрома и никеля расплав, содержащий требуемые количества хрома и никеля и 1— 2,5 % углерода с температурой ~ 1550 °С. Расплав заливают в конвертер вместе с 1—2 % электропечного шлака и ведут продувку, подавая аргоно-кислородную смесь в защитной оболочке из аргона через фурмы, расположенные в стенке конвертера над днищем. Продувка делится на два периода — окислительный, когда металл продувают смесью кислорода и аргона переменного состава, и восстановительный, когда продувку ведут аргоном. Окислительная продувка длится 30—50 мин, ее начинают смесью с соотношением расходов кислорода и аргона 3:1. По мере уменьшения концентрации углерода в металле долю аргона в смеси увеличивают, что облегчает окисление углерода; заканчивают продувку при соотношении кислород—аргон 1: 3,5.

По ходу продувки в конвертер несколькими порциями за­гружают известь (до 6 % от массы металла), а в середине

336


продувки — охладитель (скрап). За время продувки окис ляются весь кремний и углерод, а также немного железа, марганца и хрома (при исходном содержании хрома, напри­мер, 16,5 % его концентрация в металле снижается до ~ 14,5 %). Образующийся из электропечного шлака, добав­ляемой извести и продуктов окисления шлак содержит менее 2-4% оксидов железа, до 20-30% Сг2Оа и в конце окисли­тельного периода, имея основность 1,8—2,0, является туго­плавким и гетерогенным. Когда углерод окислен до содержа­ния около 0,03%, начинают восстановительный период, за­дачами которого являются восстановление хрома из шлака и удаление в шлак серы. Отключают подачу кислорода, в кон­вертер вводят известь для повышения основности шлака, ферросилиций и силикомарганец для восстановления хрома из шлака и плавиковый шпат (до 0,75 % от массы металла) для разжижения шлака, чтобы он стал реакционноспособным. Про­дувка аргоном длится 8 мин и более. За это время кремний восстанавливает большую часть оксидов хрома шлака (усвое­ние хрома составляет примерно 98 % от исходного содержа­ния в шихте), а также оксидов железа и марганца. В шлак удаляется до 50% (и более) содержавшейся в металле серы за счет ее реагирования с СаО. Содержание фосфора в ме­талле остается неизменным, поскольку он не удаляется в шлак из-за низкого содержания в последнем оксидов железа. Общий расход кислорода и аргона составляет соответст­венно 20-30 и 10-25 м3/т стали. Технология АОД-процесса постоянно совершенствуется; находят применение ряд разно­видностей этой технологии. Одна из них предусматривает вдувание аргоно-кислородной смеси в течение первых 5—8 мин окислительной продувки с помощью вводимой в кон­вертер сверху фурмы. Еще одна разновидность предусматри­вает проведение восстановительного периода с раздельным восстановлением хрома и десульфурацией. При этом в начале периода в конвертер добавляют ферросилиций и плавиковый шпат и ведут продувку аргоном до восстановления хрома из шлака. Далее шлак сливают, в конвертер вводят новую пор­цию шлакообразующих — известь с плавиковым шпатом и вновь проводят продувку аргоном. При этом в шлак удаляется сера (до 90 % от ее исходного содержания). С целью экономии дорогостоящего аргона иногда в начале окислительного пе­риода вместо него используют азот.

337


Ход плавки на воздушном дутье

Для продувки в малобессемеровских конвертерах используют чугун марки Б-1, который содержит, %: 3,0-3,5 С; 1,25— 1,75 Si; 0,6-1,2 Мп; < 0,07 Р и <0,04S. Этот чугун от­личается повышенным содержанием кремния, являющегося ос­новным "топливом" малобессемеровского процесса.

Жидкий чугун в литейных цехах получают расплавлением в вагранках твердого чугуна. Температура чугуна при заливке в конвертер обычно составляет 1350—1450 °С. После заливки чугуна подают дутье и конвертер поворачивают так, чтобы фурмы были немного погружены в металл. Это способствует улучшению перемешивания металла и позволяет более полно использовать кислород дутья.

Продувка делится на два периода. В первом (4-6 мин) окисляются кремний, марганец, железо и образуется Шлак, состоящий из Si02, FeO и MnO. Вследствие повышенного уга­ра железа при поверхностной продувке содержание FeO в шлаках первого периода достигает 45 %. После того как окислились кремний и марганец, начинается второй период — выгорание углерода. Конвертер наклоняют на 5—20° от вер­тикального положения в сторону, противоположную фурмам так, чтобы дутье поступало на поверхность металла. Это создает условия для догорания окиси углерода в полрсти конвертера. Содержание FeO в шлаке во втором периоде по­нижается, так как оно расходуется на окисление углерода.

Скорость окисления углерода при малом бессемеровании периодически изменяется, что внешне проявляется в чере­дующихся подъемах и опусканиях пламени над конвертером.

В начале второго периода СО догорает до СОг внутри конвертера и яркого пламени над горловиной не обнаружи­вается. Повышение температуры металла в результате дого­рания СО приводит к резкому возрастанию интенсивности окисления углерода. Металл вследствие выделения большого количества пузырьков СО вспенивается и поднимается выше фурм. Дутье при этом проходит через слой чугуна, и весь кислород расходуется на окисление углерода внутри метал­ла. Поэтому СО догорает лишь при выходе из конвертера, и над горловиной появляется яркое пламя.

Так как поступление тепла от дожигания СО прекраща­ется, а реакция окисления углерода за счет оксида железа

340


шлака идет с поглощением тепла, температура металла и интенсивность выгорания углерода быстро падают. Уровень металла опускается, и дутье снова начинает поступать в полость конвертера. Догорание оксида углерода вновь про­исходит внутри конвертера, и пламя над горловиной исчеза­ет. Дальнейшее повышение температуры металла ведет к пов­торению описанного цикла. При нормальном ходе плавки обычно наблюдаются два подъема и опускания пламени.

После окончания продувки металл раскисляют и выпускают в ковш. Длительность продувки обычно равна 14-23 мин. Температура стали при выпуске составляет 1680-1720 °С. Конечный шлак малого бессемерования содержит 55—70 % SiOj, 14-25% FeO и 8-15% MnO.

Продувка кислородом

В последние годы для продувки чугуна в малобессемеровских конвертерах применяют воздух, обогащенный кислородом, и чистый кислород. Это позволяет сократить продолжитель­ность плавки, использовать в шихте стальной лом, увели­чить выход годной стали.

При работе на кислороде количество дутья уменьшается в 12-15 раз, и поэтому устанавливают одну фурму, представ­ляющую собой медную или латунную трубку, пропущенную че­рез огнеупорный стержень с отверстием по оси (рис. 101). Фурму устанавливают в боковой стенке конвертера под углом 30—45° к поверхности ванны при вертикальном положении конвертера. Внутренний диаметр сопла в зависимости от емкости конвертера изменяется в преде­лах 8—16 мм.

Рис. 101. Кислородная фурма малого бес­семеровского конвертера: / — футеровка конвертера; 2 — огнеупор­ные трубки; 3 — латунная или медная трубка; 4 — дутьевая коробка; 5 — огне­упорная масса

341


При продувке кислородом в конвертер перед заливкой чу­гуна загружают лом (до 40 % от массы чугуна). После слива чугуна конвертер устанавливают так, чтобы устье фурмы бы­ло погружено в металл на 50—100 мм. С самого начала про­дувки одновременно окисляются кремний, марганец и углерод чугуна. Окисление кремния и марганца заканчивается на 3—5-й мин продувки, после чего начинается бурное окисле­ние углерода. В начале бурного окисления углерода конвер­тер поворачивают в сторону, противоположную фурмам, чтобы часть кислорода расходовалась на дожигание оксида углеро­да в полости конвертера.

Длительность продувки составляет 10—15 мин, давление кислорода на разных заводах колеблется в пределах 0,5-1,5 МПа.

Содержание FeO в шлаке при продувке кислородом меньше, чем при продувке воздухом. Благодаря этому, а также вследствие сокращения длительности продувки, заметно уменьшается угар железа. Сталь, выплавленная при работе на кислородном дутье, содержит в 2—3 раза меньше азота, чем при работе на воздушном дутье.

Технико-экономические показатели процесса

Производительность малобессемеровских конвертеров зависит от организации работ литейного цеха. Выход жидкой стали при работе на воздушном дутье составляет 82—87 % от массы жидкого чугуна. Потери в виде угара металла, выбросов и корольков в шлаке равны 13-18%. Расход воздуха состав­ляет 600—800 м3/т чугуна. Угар чугуна при его расплавле­нии в вагранке составляет 3-5%.

При продувке чистым кислородом выход жидкой стали уве­личивается до 92—93 %. Расход кислорода составляет 50 — 70 м3 на 1т стали. Применение стального лома при кисло­родном дутье обеспечивает снижение стоимости стали.

Г л а в а 3. МАРТЕНОВСКОЕ ПРОИЗВОДСТВО СТАЛИ

Сущность мартеновского процесса заключается в ведении плавки на поду пламенной отражательной печи, оборудован­ной регенераторами для предварительного подогрева воздуха (иногда и газа). Идея получения литой стали на поду отра­жательной печи высказывалась многими учеными (например, в

342


1722 г. Реомюром), но осуществить это долгое время не удавалось, так как температура факела обычного в то время топлива — генераторного газа - была недостаточной для на­грева металла выше 1500 °С (т.е. недостаточна для получе­ния жидкой стали). В 1856 г. братья Сименс предложили ис­пользовать для подогрева воздуха тепло горячих отходящих газов, устанавливая для этого регенераторы. Принцип реге­нерации тепла был использован Пьером Мартеном для плавки стали. Началом существования мартеновского процесса можно считать 8 апреля 1864 г., когда П.Мартен на одном из за­водов Франции выпустил первую плавку.

В мартеновскую печь загружают шихту (чугун, скрап, ме­таллический лрм и др.), которая под действием тепла от факела сжигаемого топлива постепенно плавится. После расплавления в ванну вводят различные добавки для полу­чения металла заданного состава и температуры; затем го­товый металл выпускают в ковши и разливают. Благодаря своим качествам и невысокой стоимости мартеновская сталь нашла широкое применение. Уже в начале XX в. в мартеновс­ких печах выплавляли половину общего мирового производст­ва стали.

В России первая мартеновская печь была построена С.И.Мальцевым в 1866—1867 гг. на Ивано-Сергиевском желе­зоделательном заводе (бывш. Калужской губернии) Мальцев-ского фабрично-заводского округа. В 1870 г. первые плавки проведены в печи вместимостью 2,5 т, построенной извест­ными металлургами А.А.Износковым и Н.Н.Кузнецовым на Сор­мовском заводе. Эта печь хорошо работала и стала образцом для печей большой вместимости, построенных позже на дру­гих русских заводах. Мартеновский процесс стал основным в отечественной металлургии. Огромную роль сыграли марте­новские печи в суровые годы Великой Отечественной войны. Советским металлургам впервые в мировой практике удалось удвоить садку мартеновских печей без существенной их пе­рестройки (ММК, КМК), удалось наладить производство высо­кокачественной стали (броневой, подшипниковой и т.п.) на действовавших в то время мартеновских печах. В настоящее время наиболее крупные и высокопроизводительные мартеновские печи работают в России и Украине. По мере расширения конвертерного и электросталеплавильного производств масштабы производства мартеновской стали сокращаются.

343


§ 1. КОНСТРУКЦИЯ И РАБОТА МАРТЕНОВСКОЙ ПЕЧИ

На рис. 102 схематически показана мартеновская печь в тот момент, когда топливо (газ) и воздух поступают с правой стороны печи. Проходя через предварительно нагретые на­садки регенераторов (воздух через воздушный регенератор, газ через газовый), воздух и газ нагреваются до 1000—1200 °С и в нагретом состоянии через головку попа­дают в печь. При сгорании топлива образуется факел с тем­пературой 1800—1900 °С. Пройдя головку, расположенную в противоположной стороне печи, раскаленные продукты сгора­ния попадают в другую пару насадок регенераторов и по системе боровов уходят к трубе. При этом насадки регене­раторов нагреваются. При такой работе насадки регенерато­ров правой стороны постепенно охлаждаются, а насадки ре­генераторов левой стороны нагреваются. В момент, когда

Рис. 102. Современная мартеновская печь:

1 — головка; 2 — вертикальный канал; 3 — шлаковик; 4 — борова; 5 — насадка газового регенератора; 6 — сталевыпускное OTBejpcrae; 7 — отверстие в задней стенке печи для спуска шлака; 8 — под; Р — завалочные окна; 10 — передняя стенка; 11 — задняя стенка; 12 — рабочее пространство; 13 — свод; 14 — ре­генераторы (газовый и воздушный); А — поперечный разрез рабочего простран­ства печи; Б — разрез по "головке* печи

344


регенераторы, через которые проходят в печь воздух и газ, уже не в состоянии их нагревать до нужной температуры, а регенераторы, через которые из печи уходит дым, перегре­ваются, осуществляется изменение направления движения га­зов печи. Для изменения направления движения газов пре­дусмотрены перекидные клапаны (рис. 103), а операцию на­зывают перекидкой клапанов. Холодный воздух и газ направ­ляются через хорошо нагретые левые регенераторы, а про­дукты сгорания уходят в правую сторону печи, постепенно нагревая остывшие правые регенераторы, затем цикл повто­ряют. Через некоторое время наступает момент, когда на­правление движения газов опять изменяется и т.д.

Энтальпия продуктов сгорания Я равна произведению мас­
сы продуктов сгорания т на их теплоемкость С и температу­
ру t, т.е. Я = Cmt, откуда t = Н/Ст. Энтальпия Я склады­
вается из химического тепла сгорания топлива Яхт, тепла
нагрева воздуха Ян в и тепла нагрева газа Ян г, т.е. Я =
=     Ях т + Ян в + Ян г;       соответственно   t = (Ях т + Ян в +

+ НИТ)/Ст.

Таким образом, при нагреве поступающих в печь газа и воздуха обеспечивается достаточно высокая температура факела (> 1800 °С). Чем выше удается повысить температуру поступающих в печь газа и воздуха, тем выше температура факела и тем лучше работает печь.

Повысить температуру факела можно и другим способом — заменить весь воздух или часть его кислородом. Тогда в формуле t = Н/Ст уменьшается знаменатель (уменьшается т)

Рис. 103. Схема перекидных устройств:

1, 7 — газовые клапаны (пере­кидные клапаны на пути движе­ния газа; 2, 8 — задвижки (шиберы) на каналах (боровах) от газовых регенераторов; 3, 4 — воздушные клапаны; 5, б — задвижки на клапанах от воз­душных регенераторов; Р — регулировочная задвижка (ши­бер); 10 — задвижки на борове трубы; 11 — задвижки на боро­ве к котлу утилизатору; 12 — регулирующие колонки


и соответственно возрастает температура. На каждый объем подаваемого с воздухом кислорода поступает 3,762 объемов балластного азота. Обогащение воздуха кислородом приводит к уменьшению количества продуктов сгорания (при том же количестве теплоты, выделенной топливом) и соответственно повышается температура.

Повышая постепенно степень обогащения (вплоть до пол­ной замены воздуха кислородом), можно добиться достаточно высокой температуры факела без предварительного подогрева газа и воздуха (или смеси воздуха и кислорода). В этом случае регенераторы оказываются ненужными.

В мартеновской печи газы попадают сначала в шлаковик, а уже затем в регенератор. Шлаковики служат для улавлива­ния плавильной пыли и шлаковых частиц, уносимых продукта­ми сгорания из рабочего пространства, и тем самым пред­охраняют насадки регенератора от засорения. Сечение шла­ковика гораздо больше сечения вертикального канала, по­этому при попадании дымовых газов в шлаковик их скорость резко уменьшается и, кроме того, меняется направление движения газов. Это приводит к тому, что значительная часть (50—75 %) плавильной пыли оседает в шлаковиках.

Из рабочего пространства печи дымовые газы выходят с температурой 1680—1750 °С, из шлаковика в регенератор — с температурой 1500-1550 °С. Пройдя насадку регенератора, они охлаждаются до 500—700 °С. Обычно стремятся использо­вать тепло отходящих газов, направляя их по системе боро­вов в котел-утилизатор.

Если по каким-либо причинам котел-утилизатор не уста­новлен или находится на ремонте, дымовые газы по боровам направляют в трубу.

В зависимости от вида топлива и его теплоты сгорания мартеновские печи могут иметь две пары регенераторов — для подогрева воздуха и газа (при отоплении печи газом с невысокой теплотой сгорания) или одну пару регенераторов (если печь отапливается топливом с высокой теплотой сго­рания, подогрев которого не нужен или трудно осуществим).

В зависимости от вместимости мартеновские печи делят на печи малой («125 т), средней (125-300 т) и большой (> 300 т) вместимости. Выпуск металла из большегрузных печей производится обычно одновременно в два ковша (в исключительных случаях— в три).

346


Под вместимостью обычно понимают массу загруженной в печь металлошихты. Массу вводимых в печь по ходу плавки добавочных материалов при этом не учитывают.

1. Назначение и устройство отдельных элементов печи

Все строение мартеновской печи делится на верхнее и ниж­нее. Верхнее строение расположено над площадкой мартенов­ского цеха, которую сооружают для обслуживания печи на высоте 5—7 м над уровнем пола цеха. Верхнее строение сос­тоит из собственно рабочего пространства печи и головок с отходящими вниз вертикальными каналами. Нижняя часть рас­положена под рабочей площадкой и состоит из шлаковиков, регенеративных камер с насадками и боровов с перекидными устройствами.

Рабочее пространство печи

Рабочее пространство мартеновской печи ограничено сверху сводом, снизу — подом (или "подиной"). На рис. А на гра­нице задней стенки и подины показано отверстие для выпус­ка плавки (обычно его называют сталевыпускным отверс­тием). В передней стенке видны проемы — завалочные окна, через которые в рабочее пространство загружают твердую шихту и заливают (по специальному приставному желобу) жидкий чугун.

Обычно завалочные окна закрыты специальными футерован­ными крышками с отверстиями — гляделками, через которые сталевар наблюдает за ходом плавки и состоянием печи.

Из всех элементов печи рабочее пространство находится в наиболее тяжелых условиях — в нем идет плавка стали. Во время завалки твердой шихты огнеупорные материалы, из которых изготовлено рабочее пространство, подвергаются резким тепловым и механическим ударам, во время плавки они подвергаются химическому воздействию расплавленных металлов и шлака; в рабочем пространстве максимальная температура. Стойкостью элементов рабочего пространства печи определяют, как правило, стойкость всей печи и, сле­довательно, сроки промежуточных и капитальных ремонтов.

В соответствии с этим к огнеупорным материалам рабоче­го пространства предъявляют высокие требования: а) высокая огнеупорность; б) химическая устойчивость про-

347


тив воздействия шлака, металла и печных газов; в) доста­точная механическая прочность при высоких температурах; г) хорошая термостойкость при колебаниях температуры.

По химическим свойствам применяемые огнеупорные мате­риалы делят на: а) кислые — динасовый кирпич, кварцевый песок; б) основные — магнезитовый кирпич, магнезитовый порошок, доломит; в) нейтральные (со свойствами амфотер-ных окислов) — шамот, хромомагнезит, магнезитохромит, вы­сокоглиноземистый шамот, форстерит.

Подина печи

Так же, как и при выборе футеровки бессемеровского или томасовского конвертера, выбор футеровки для подины мар­теновской печи определяется характеристикой шлаков. Если при плавке стали шлаки кислые, то подину нужно изготов­лять из кислых огнеупорных материалов, а если шлаки ос­новные, то из основных. В противном случае в результате энергичного взаимодействия шлака и материала подины по­следний ошлакуется, перейдет в шлак, и печь выйдет из строя. Процесс, при котором в шлаке преобладают кислотные окислы, называют кислым мартеновским процессом; соответ­ственно печь, подина которой изготовлена из кислых огне­упорных материалов, называют кислой мартеновской печью. Процесс, при котором в шлаке преобладают основные окислы, называют основным мартеновским процессом, а печь — основ­ной мартеновской печью.

Верхний (рабочий) слой кислой подины выполняют из кварцевого песка, который набивают или наваривают на заранее выложенные динасовые кирпичи.

Рис. 104. Устройство кислого и основного подов мартеновской печи: 1 — наварка (кварцевый песок); 2 — наварка (магнезитовый порошок или моло­тый обожженный доломит); 3 — магнезитовый кирпич; 4 — динасовый кирпич;!5 — стальной лист; 6 — тепловая изоляция (пористый шамот); 7 — шамотный кирпич


Верхний слой основной подины изготовляют обычно из магнезитового порошка (реже доломитового), который наби­вают или наваривают на служащий основанием магнезитовый кирпич (рис. 104).

Задняя и передняя стенки мартеновской печи работают (особенно в нижней части) почти в тех же условиях, что и подина, так как они также соприкасаются с жидким металлом и шлаком. Заднюю и переднюю стенки кислой мартеновской печи выкладывают из динасового кирпича, основной марте­новской печи — из магнезитового.

Несмотря на то что материал пода, а также задней и пе­редней стенок по своим химическим свойствам соответствует характеру шлака (основного или кислого), шлак взаимодей­ствует с огнеупорной футеровкой. Те места ванны, которые соприкасаются во время плавки со шлаком, оказываются пос­ле выпуска плавки несколько поврежденными (изъеденными шлаком). Если не принять специальных мер, то через нес­колько плавок степень износа может возрасти настолько, что печь будет в аварийном состоянии. Чтобы избежать это­го, после каждой плавки подину ремонтируют (заправка пе­чи): на изъеденные места кислой подины набрасывают песок, а основной подины - магнезитовый или доломитовый порошок. Заправке подвергают и торцовые части подины, прилегающие к головкам печи; их называют откосами. Заправку осущест­вляют с помощью специальных заправочных машин.

Свод печи

Свод мартеновской печи практически не соприкасается со шлаком, поэтому его можно изготовлять из кислых и основ­ных огнеупорных материалов независимо от типа процесса. Своды изготовляют из динасового или термостойкого магне-зитохромитового кирпича.

Динасовый кирпич при высоких температурах (до 1700 °С) сохраняет достаточную прочность и повышенное сопротивле­ние сжатию. Во время эксплуатации динасовые кирпичи свода свариваются в монолит, что имеет большое значение, так как если какой-либо кусок свода упадет, то остальная часть свода будет держаться. Однако при нагреве свыше 1700 °С динасовый кирпич быстро оплавляется; кроме того, он сильно разъедается плавильной пылью, состоящей из ок­сидов железа (образуются легкоплавкие силикаты железа).


 


348


349


Магнезитохромитовый кирпич характеризуется более высо­кой огнеупорностью (допустимая температура нагрева 1750 °С и даже 1800 °С), что способствует повышению производительности печи. Стойкость свода (число плавок от ремонта до ремонта) из магнезитохромитового кирпича в 2-3 раза выше, чем из динасового. Вместе с тем при ис­пользовании в качестве материала свода магнезитохромито­вого кирпича приходится учитывать ряд особенностей его эксплуатации: а) магнезитохромитовые кирпичи плохо свари­ваются и не образуют монолита; б) коэффициент расширения магнезитохромитового кирпича выше, чем динасового, в ре­зультате чего при разогреве арки свода наружные швы раск­рываются, а на внутренней стороне возникают высокие напряжения сжатия, что приводит к сколу внутренней части свода; в) повышенная теплопроводность и большие неплот­ности кладки (раскрытые швы) обусловливают более высокие (почти в два раза) потери тепла с 1м2 площади свода; г) объемная масса магнезитохромитового кирпича в 1,5 раза больше, чем динасового.

Все это исключает возможность применения обычного арочного свода. Свод приходится выполнять распорно-подвесным с креплением и прокладками между кирпичами, а это усложняет и удорожает конструкцию.

Однако возможность повысить температуру в печи при использовании магнезитохромитового свода, а также увели­чить срок службы свода делает устройство сложной системы подвесок рентабельным, поэтому своды такого типа нашли широкое применение. Почти все своды мартеновских печей в настоящее время делают из основных магнезитохромитовых кирпичей.

Стойкость магнезитохромитового свода составляет 300—1000 плавок (динасового 200—350 плавок). В тех слу­чаях, когда на основной печи устанавливают кислый динасо-вый свод, между основным огнеупорным материалом стенок печи (магнезитом) и кислым материалом свода (динасом) выкладывают слой амфотерных огнеупоров (например, хромис­того железняка).

Следует отметить две тенденции в конструировании и строительстве мартеновских печей: 1) применение вместо отдельных кирпичей для кладки пода, стен печи, а также свода заранее подготовленных крупных блоков, что  позво-


ляет существенно сократить время строительства или ремон­та печи; 2) применение вместо огнеупорной кладки водоох-лаждаемых конструкций.

Головки печи

Рабочее пространство с торцов оканчивается головками. Правильный выбор конструкции головок имеет большое значе­ние для хорошей работы печей. Через головки в печь подают воздух и топливо. От того, с какой скоростью вводят в ра­бочее пространство воздух и топливо и насколько хорошо струи топлива и воздуха перемешиваются, зависят форма и ряд других характеристик факела, а от факела зависит и вся работа печи.

Головки должны обеспечить: 1) хорошую настильность факела по всей длине ванны (чтобы максимум тепла передать ванне и минимум — своду и стенкам); 2) минимальное сопро­тивление при отводе продуктов сгорания из рабочего прост­ранства; 3) хорошее перемешивание топлива и воздуха для полного сжигания топлива в рабочем пространстве печи.

Чтобы удовлетворить первому и третьему требованиям, сечение выходных отверстий должно быть малым (чтобы ско­рости ввода воздуха и топлива были максимальными); для удовлетворения второго требования сечение, наоборот, дол­жно быть максимальным. Эта двоякая роль головок (с одной стороны, служить для ввода в печь воздуха и топлива, а с другой — отводить продукты сгорания) ставит очень непрос­тую задачу перед конструкторами при проектировании печей.

Шлаковики

Отходящие из рабочего пространства печи дымовые газы про­ходят через головку и по вертикальным каналам попадают в шлаковики (рис. 105). Как уже было сказано, в шлаковиках оседает 50—75 % плавильной печи, причем оседает крупная пыль, более мелкие фракции в значительной степени уносят­ся в трубу (10—25 % пыли оседает в насадках регенерато­ров). На пути движения дымовых газов плавильная пыль, содержащаяся в них, реагирует с материалами кладки. Это обстоятельство приходится учитывать при выборе материалов для кладки вертикальных каналов и шлаковиков.

Почти вся пыль представляет собой основные окислы (в том числе 60-80 % оксидов железа). Если вертикальные ка-


 


350


351


 


А-А


Щ^ШШ^ Ш


 


Рис. 106. Вытягивание кассет-  Рис. 107. Насадка регенераторов:

ных блоков из шлаковика               а — из обычного кирпича; б — из фасонного


<-А

Рис. 105. Устройство шлаковиков и регенераторов мартеновской печи средней емкости, работающей с подогревом и газа и воздуха:

1 - вертикальные каналы; 2 - шлаковик; 3 - насадки регенераторов; 4 - под­весной свод наднасадочного пространства; 5— поднасадочные пространства

налы и шлаковики футерованы динасовым кирпичом, то основ­ные окислы, из которых состоит пыль, энергично взаимодей­ствуют с кислым материалом футеровки с образованием лег­коплавких силикатов железа. Стойкость футеровки оказыва­ется недостаточной, и, кроме того, оседающая в шлаковиках пыль образует плотный монолит, который во время ремонта очень трудно извлекать.

В связи с этим для кладки вертикальных каналов и шла­ковиков часто применяют термостойкий магнезитохромитовый кирпич. В этом случае взаимодействие футеровки с плавиль­ной пылью не влияет так сильно на материал футеровки, а осевшая в шлаковике пыль представляет собой более рыхлую массу. Однако очистка шлаковиков от массы осевшей в них пыли (шлака) — операция также очень трудоемкая, для ее осуществления используют специальное оборудование.

В шлаковиках должна вмещаться вся плавильная пыль, вылетающая из печи. В газах, выходящих из рабочего прост­ранства мартеновской печи, содержится пыли 2—4,5 г/м3, в моменты продувки ванны кислородом количество пыли возрас­тает почти в десять раз. При расчетах размеров шлаковиков


принимают, что на 1 т выплавляемой стали в них осаждается 7-12 кг шлака (пыли). Это значит, например, что за одну плавку в шлаковиках 600-т мартеновской печи осаждается ~ 4 т шлака. Для облегчения условий труда и проведения операции очистки шлаковиков их выполняют выкатными, а стены - из блоков, скрепленных металлическими кассетами. При ремонте шлаковик выкатывают из-под печи при помощи полиспаста, краном убирают блоки-кассеты и шлак увозят из цеха на железнодорожных платформах (рис. 106).


Регенераторы. Из шлаковиков отходящие газы с темпера­турой 1500-1600 °С попадают в насадки регенераторов (рис. 107). Объем насадки регенераторов и площадь поверх­ности ее нагрева, т.е. поверхности кирпича насадки, омы­ваемой движущимися газами, взаимосвязаны. Эти величины определяют специальным теплотехническим расчетом, от них зависят основные показатели работы печи — производитель­ность и расход топлива. Регенераторы должны обеспечивать постоянную высокую температуру подогрева газа и воздуха. В более тяжелых условиях работают верхние ряды насадок, поскольку в этой части регенератора температура и осажде­ние пыли наиболее высокие, поэтому верхние ряды насадок выкладывают из термостойкого магнезитохромитового или


 


352


23-3810


353


форстеритового кирпича. Нижние ряды насадок работают при температурах 1000—1200 °С (и менее), их выкладывают из более дешевого и прочного шамотного кирпича.

Перекидные клапаны

Мартеновская печь — агрегат реверсивного действия, в ко­тором направление движения газов по системе печи периоди­чески меняется. Для этого в боровах, а также в газопрово­дах и воздухопроводах устанавливают систему шиберов, кла­панов, дросселей, задвижек, объединяемых общим названием "перекидные клапаны". Операция "перекидки клапанов" в современных мартеновских печах автоматизирована.

Из боровов дымовые газы поступают в дымовую трубу. Вы­соту трубы рассчитывают таким образом, чтобы создаваемая ею тяга (рязрежение) была достаточной для преодоления сопротивления движению дымовых газов на всем пути.

Дымовая труба - сложное и дорогостоящее сооружение. Высота дымовых труб современных крупных мартеновских пе­чей превышает 100 м. Дымовые трубы обычно выкладывают из красного кирпича с внутренней футеровкой из шамотного кирпича.

Таким образом, в конструкциях современных мартеновских печей широко используют следующие огнеупорные материалы: магнезит, магнезитохромит, форстерит, динас и шамот. Объем огнеупорной кладки 500-т печи составляет около 3750 м3. Ряд элементов печи изготовляют из металла, неко­торые из них (рамы и заслонки завалочных окон, балки, поддерживающие свод рабочего' пространства, перекидные клапаны и др.) соприкасаются с горячими газами и нуждают­ся в непрерывном охлаждении.

Расход воды на охлаждение этих элементов печи очень значителен. Современные большие мартеновские печи требуют для охлаждения более 400 м3 воды в 1 ч. С охлаждающей во­дой теряется 15—25 % общего количества тепла, вводимого в печь. Расход воды зависит от ее жесткости. Допустимая температура нагрева воды тем выше, чем меньше жесткость воды. Обычно допускается нагрев охлаждающей воды на 20—25 °С, что равносильно тому, что 1 л воды уносит 85-105 кДж.

Для уменьшения расхода воды водяное охлаждение ряда элементов печи заменяют испарительным. Если применять не


техническую, а химически очищенную воду, то можно, не боясь выпадения осадка (накипи), нагревать ее до 100 °С и выше. При этом от охлаждаемого элемента отводится не только тепло, затрачиваемое на нагревание воды до кипе­ния, но и скрытая теплота парообразования (2,26 МДж/кг), т.е. 1 л воды отводит от охлаждаемого элемента печи не 85-105 кДж, а 2,58-2,6 МДж. Таким образом, расход воды можно сократить почти в 30 раз, кроме того, на больших печах получают при этом некоторое количество пара (до 10 т/ч), который может быть использован.

Существует также так называемое "горячее" охлаждение печей. Система горячего охлаждения технологически мало отличается от обычного способа охлаждения обычной произ­водственной водой. Все охлаждаемые элементы печи остаются без изменения, но через них вместо обычной производствен­ной воды с температурой 15—30 °С пропускают химически очищенную теплофикационную воду из оборотной теплофика­ционной сети с температурой 50—80 °С, которая, пройдя охлаждаемые элементы печи и подогревшись в них на 20-30 °С, возвращается обратно в теплофикационную сеть, где передает полученное тепло потребителю.





Поделиться с друзьями:


Дата добавления: 2018-11-10; Мы поможем в написании ваших работ!; просмотров: 180 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наглость – это ругаться с преподавателем по поводу четверки, хотя перед экзаменом уверен, что не знаешь даже на два. © Неизвестно
==> читать все изречения...

2610 - | 2184 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.