2.1. Общие представления о головном мозг
Для того чтобы рассмотреть современные представления не только о психологической структуре ВПФ человека, но и их мозговой организации, целесообразно обратиться к современным представлениям о головном мозге в целом.
Головной мозг человека — это верхний отдел центральной нервной системы (ЦНС). Между ним и нижним отделом ЦНС (спинным мозгом) не существует границы, которая была бы выражена анатомически. Окончанием спинного мозга и началом головного условно служит верхний шейный позвонок. Отсюда понятно, какую важную роль для работы всей нервной системы имеет состояние каждой из частей ЦНС. В частности, тот факт, что ее «нервная ось» (головной и спинной мозг) едина, обусловливает зависимость работы головного мозга от состояния спинного, особенно в детском возрасте. Это, в свою очередь, свидетельствует о том, что воспитательные меры по укреплению позвоночного столба в самый ранний период жизни, а также по выработке правильной осанки в последующее время являются необходимыми.
Различные части мозга не одинаковы по иерархии. В нейропсихологии принято их анатомическое деление на блоки, учение b которых разработано А.Р. Лурией. Каждый из них составлен различными мозговыми структурами, о которых речь пойдет Далее.
Основную часть, самую большую по занимаемой площади, Составляет кора мозга (рис. 1, 2, цв. вкл.). Она имеет: а) поверхностные складки, которые обозначаются как борозды; б) глубокие складки, обозначаемые как щели; в) выпуклые гребни на поверхности мозга — извилины.
Щели разделяют мозг на доли (рис. 2, цв. вкл.). Извилины делят доли на еще более дифференцированные в функциональном отношении участки.
Основными единицами нервной системы являются нервные клетки — нейроны (рис. 9 см. цв. вкл.). Как и другие клетки нашего организма, нейрон содержит тело с расположенным в центре ядром и отростки, которые называются невритами. Одни из невритов передают нервные импульсы другим клеткам, другие — принимают их. Передающие отростки — длинные. Это аксоны Принимающие — короткие. Этодендриты. Каждая клетка имеет один аксон и много дендритов.
Нейронами составлено серое вещество мозга. Они чрезвычайно разнообразны по форме и функциональному назначению. Их отростки, аксоны, передающие информацию — это белое вещество мозга. Аксоны миелинизированы, т.е. покрыты жировым миелином, который повышает скорость передачи нервных импульсов. Аксоны надежно защищены глиальными клетками митохондриями, представляющими собой опорные клетки, образующие белую жировую (миелиновую) прослойку — глию. Глия не является сплошной. На ней есть перехваты, называемые перехватами Ранвье. Они облегчают прохождение нервных импульсов от клетки к клетке. Эту же роль играют пузырьки (нейромидиаторы), расположенные в окончаниях аксонов. Глиальные клетки не проводят нервные импульсы. Одни из них питают нейроны, другие защищают от микроорганизмов, третьи регулируют поток спинномозговой жидкости.
В теле клетки имеются и другие структуры, обеспечивающие жизнедеятельность. Наиболее важными из них являются рибосомы (тельца Ниссля). Рибосомы имеют форму гранул. Они синтезируют белки, без которых клетка не может выжить.
Несмотря на сложность клеточного устройства мозга, законы его функционирования во многом изучены и представляют чрезвычайный интерес.
Испанский ученый Сантьяго Рамон-и-Кахал дал удивительно поэтичное описание мозга с точки зрения составляющих его нервных клеток. «Сад неврологии, — писал он, — представляет исследователю захватывающий, ни с чем не сравнимый спектакль. В нем все мои эстетические чувства находили полное удовлетворение. Как энтомолог, преследующий ярко окрашенных бабочек, я охотился в красочном саду серого вещества с их тонкими, элегантными формами, таинственными бабочками души, биение крыльев которых, быть может, когда-то — кто знает? — прояснит тайну духовной жизни».
Мозг новорожденного ребенка насчитывает 12 миллиардов нейронов и 50 миллиардов глиальных клеток, взрослого человека — 150 миллиардов нейронов (по И.А. Скворцову). Если их вытянуть в цепочку, вернее, в мост, то по нему можно пропутешествовать на Луну и обратно.
Размер каждой клетки чрезвычайно мал, но диапазон их различий по этому признаку достаточно велик: от 5 до 150 микрон. В течение жизни человек теряет определенное число клеток, но в сравнении с общим их числом потери ничтожны (приблизительно 4 миллиарда нейронов). Если совсем недавно считалось, что нервные клетки не восстанавливаются, то в настоящее время эта истина перестала быть абсолютной. Нейробиолог С. Вайс из Канады в 1998 году высказал мнение, основанное на проведенных им исследованиях, что нейроны могут восстанавливаться. Правда, механизм такого восстановления имеет место не у всех людей и не при всех условиях. Причины этого продолжают выясняться, но сам факт того, что это возможно, относится к числу на редкость сенсационных.
До того, как были открыты тайны созревания и функционирования нервных клеток, считалось, что нервы — это пустые (полые) трубки. По ним движутся потоки газов или жидкостей. Исаак Ньютон впервые отошел от этих представлений, заявив, что передачу нервного импульса осуществляет вибрирующая эфирная среда. Однако еще ближе к истинному положению вещей подошел итальянский исследователь Луиджи Гальвани. В научном мире, а также вне его, хорошо известен казус, который помог ему открыть биоэлектрическую природу функционирования нервной системы.
Имеется в виду оторвавшаяся лапка только что подвергшейся препарированию лягушки, которая случайно попала под действие электрического тока и стала сокращаться (дергаться). Так были заложены основы важнейшей на сегодняшний день науки о мозге — нейрофизиологии, изучающей электрические биопотенциалы мозга.
Широко известно, что нервные клетки объединяются в сети, которые называют также нервными цепями. У каждого нейрона приблизительно 7 тыс. таких цепей. По цепям от клетки к клетке передается информация. Местом обмена являются места соединения аксона (длинного отростка клетки) одной клетки и дендрита (короткого отростка) другой клетки. Нейрон передает возбуждение другому нейрону через одну или множество точек контакта (синапсы) — (рис. 10, цв. вкл.). Когда импульс доходит до синаптического узла, выделяется особое химическое вещество — нейромедиатор. Оно заполняет синаптическую щель и распространяет нервный импульс на значительное расстояние. Чем больше синапсов, тем вместительнее в смысле памяти мозговой «компьютер». Каждая нервная клетка получает импульсы от многих сотен, и даже тысяч нейронов.
Согласно представлениям нейрофизиологии, скорость течения электрического тока по проводам нервов равна скорости винтового самолета — 60-100 м/с. Обычно расстояние от синапса до синапса составляет 1,5-2 м. Нервный импульс преодолевает его за 1/100 долю секунды. Сознание не успевает зафиксировать это время. Скорость мысли, таким образом, выше скорости света. Это находит отражение во многих фольклорных источниках. Вспомним, например, принцессу, которая, испытывая доброго молодца, загадывает ему загадки, и в частности, эту: «Что на свете быстрее всего?» (имея в виду в качестве ответа — мысль).
Нервные клетки не делятся, как это делают другие клетки организма, поэтому при повреждении они чаще всего погибают.
Несмотря на то, что нервный импульс имеет электрическую природу, связь между нейронами обеспечивается химическими процессами. Для этого в мозге имеются биохимические субстанции — нейротрансмиттеры и нейромодуляторы. В тот момент, когда электрический сигнал доходит до синапса, высвобождаются соответствующие трансмиттеры. Они, как транспортное средство, доставляют сигнал к другому нейрону. Затем эти нейротрансмиттеры распадаются. Однако на этом процесс передачи нервных импульсов не заканчивается, т.к. нервные клетки, находятся за синапсом, активизируются, и возникает постсинапсический потенциал. Он рождает импульс, движущийся к другому синапсу, и описанный выше процесс повторяется тысячи итысячи раз. Это позволяет воспринимать и обрабатывать колоссальный объем информации.
Во многих публикациях по неврологии и нейрофизиологии отмечается, что сложнейшая мозговая деятельность обеспечивается, в сущности, простыми средствами. Некоторые из авторов отмечают, что эта простота отражает универсальный закон «достижения большой сложности через многократные преобразования простых элементов» (Э. Голдберг). Аналогично этому, множество слов в языке складывается из ограниченного числа звуков речи и букв алфавита, бесчисленные музыкальные мелодии — из малого числа нот, генетические коды миллионов людей обеспечиваются конечным числом генов и т.д.
2.2. Анатомическая и функциональная дифференциация мозга
2.2.1. Поля коры мозга
Согласно сложившимся представлениям, кора мозга имеет шесть основных слоев, каждый из которых состоит из различных по форме и размеру нервных клеток. Этот анатомический факт имеет, однако, не столь важное значение для понимания нейропсихологических феноменов, как функциональная дифференциация коры на три основных вида полей — первичные, вторич ные и третичные (рис. 8, цв. вкл.). Они различаются между собой по иерархии. Наиболее элементарными являются первичные, более сложными по строению и функционированию — вторичные, и, наконец, наиболее сложными по этим признакам являются третичные поля.
Поля каждого из уровней имеют свою нумерацию, которая указывается на цитоархитектонических картах мозга. Наиболее распространенной из них является карта Бродмана (рис. 6, цв. вкл.).
Первичные поля — это «корковые концы анализаторов» и, как уже сообщалось выше, они функционируют от природы, врожденно. Их локализация зависит от того, к какому анализатору они относятся.
Первичные поля, находящиеся в лобной доле (до центральной извилины), а именно поля 10, 11, 47, настроены на подготовку и исполнение двигательных актов, относящихся к физическому Уровню.
Первичные поля слухового анализатора располагаются преимущественно на внутренней поверхности височных долей мозга (поля 41, 42), кинестетического (чувствительного в целом) вблизи от центральной (Ролландовой) борозды, в теменной доле (поля 3, 1 и 2).
Первичные чувствительные (тактильные) поля характеризуются тем, что они являются проекционными зонами в отношении определенных частей тела: верхние отделы принимают чувствительные сигналы (ощущения) от нижних конечностей (ног), средние обрабатывают ощущения от верхних конечностей, а нижние — от лица, включая отделы речевого аппарата (язык, губы, гортань, диафрагму). Кроме того, нижние отделы теменной проекционной зоны принимают ощущения от некоторых внутренних органов. Алгоритм проекций тела в переднем блоке мозга тот же, что и в заднем. Они также являются проекционными, но уже в отношении не чувствительных (кинестетических), а двигательных функций. Главное отличие проекционных зон от других состоит в том, что размеры той или другой части тела определяются не анатомической, а функциональной значимостью.
Первичные клетки мозга в самом раннем онтогенезе функционируют изолированно друг от друга, подобно отдельным мирам в Космосе. Так, ребенок узнает голос матери, но не узнает ее лица, если она молчит. Особенно часто разобщение слуховых и зрительных впечатлений на уровне ощущений наблюдается в отношении лица отца, которое младенцы видят реже, чем лицо матери. В литературе описаны случаи, когда ребенок, увидев склоненное над ним лицо отца, начинает громко испуганно плакать, пока он не заговорит. Постепенно между первичными полями коры мозга прокладываются информационные связи (ассоциации). Благодаря им накапливается опыт ощущений, т.е. появляются элементарные знания о действительности. Например, ребенок «узнает», что сосание груди или бутылочки утоляет чувство голода.
2.2.2. Модально-специфическая кора мозга
Первичные поля однородны по клеточному составу, поэтому они обозначаются как модально-специфические. Обонятельные поля содержат только обонятельные нервные клетки, слуховые — только слуховые и т.п. Несмотря на универсальность физиологических и биохимических механизмов, обеспечивающих работу мозга, его различные отделы функционируют по-разному, т.е. имеют различную функциональную специализацию, представляя разные модальности.
Вторичные поля тоже модально-специфичны, хотя и менее однородны, чем первичные. В состав клеток преобладающей модальности вкраплены клетки других модальностей. Третичные будучи зонами перекрытия, содержат не только клетки полых модальностей, но и их целые зоны. Исходя из этого, их обозначают как полимодальные или надмодальностные. Благодаря функционированию реализуются наиболее сложные ВПФ, и в частности, определенные речевые компоненты. Модально специфические структуры мозга вносят в них свой собственный и что особенно важно, суммарный вклад.
Вторичные и третичные поля коры, в отличие от первичных, имеют особенности функционирования в зависимости от лате пализации, т.е. расположения в том или другом полушарии мозга. Например, височные доли разных полушарий, относясь к одной и той же, а именно, слуховой модальности, выполняют разную «работу». Височная доля правого полушария ответственна за обработку неречевых шумов (издаваемых природой, включая «голоса животных» и голоса людей, предметами, включая музыкальные инструменты и саму музыку, которую можно считать высшим видом неречевого шума). Височная же доля левого полушария осуществляет обработку речевых сигналов. Помимо различий в специализации височных долей мозга, относящихся к разным полушариям, здесь можно усмотреть и столь характерный для природы принцип «защиты» наиболее важных функций, и тем более такой важной и необходимой любому человеку, как речь.
Различия в функциональной специфике первичных, вторичных и третичных полей обусловливают и различия в их способности заменять друг друга (компенсировать) в случае патологии. Разрушение первичных полей не восполнимо, т.е. утерянные физический слух, зрение, обоняние и прочее не восстанавливаются. В самое последнее время это положение подвергается пересмотру в связи с изучением регенерирующей роли так называемых стволовых клеток. Функции поврежденных вторичных полей подлежат компенсации, осуществляемой за счет подключения других, «здоровых» систем мозга и перестройки способа их деятельности. Функции пострадавших третичных полей компенсируются относительно легко за счет полимодальности, позволяющей опираться на мощную систему ассоциаций, хранящихся в каждом из них и между ними. Необходимо, однако, помнить, что и в этом случае важное значение имеют возрастные пороги и время, когда начаты восстановительные мероприятия. Наиболее благоприятен ранний возраст и своевременное начало лечебных коррекционно-восстановительных мер.
Функционально все три вида полей коры соотносятся между собой вертикально: функции первичных, над ними надстраиваются функции вторичных, а над вторичными — третичных. Однако анатомически они не располагаются подобным образом, т.е. друг над другом. Первичные поля составляют ядро той или иной анализаторной зоны, которая носит в нейропсихологии название модальности. Вторичные поля находятся дальше от ядра, т.е. сдвинуты к периферии зоны, а третичные — еще далее. Пропорциональны близости к ядру и размеры разных по иерархии полей: первичные занимают наименьшую площадь, вторичные — большую, а третичные — самые большие по размеру. Вследствие этого последние накладываются друг на друга, образуя так называемые зоны «перекрытия». К ним относится, например, самая важная для ВПФ зона ТРО — височно-теменно-затылочная (temporahs — висок; panetahs — темя; oxipitahs — затылок).
В осуществлении высших психических функций наибольшее участие принимает слуховая, зрительная и тактильная кора.
Слуховая зона относится к сенсорной (воспринимающей) коре мозга. Основным ее отделом является, как указывает А.Р. Лурия, височная область левого полушария. В нее входят разные по иерархии участки, что обусловливает сложность ее структурной и функциональной организации. Наиболее значимой из них является ядерная зона слухового анализатора, обеспечивающая физический слух (поля 41, 42), — первичные поля слуховой коры. Далее от ядра располагается периферический отдел зоны (третичное поле 22). За ними следует область среднего виска, пограничная с теменной и затылочной областями (третичным полем 21 и частично с третичным полем 37). Средневисочные (внеядерные) отделы височной доли представлены третичной корой и являются более сложно организованными. Они, по представлениям нейропсихологии, ответственны за восприятие не единичных звуков речи и слов, а их серий, и тесно связаны многочисленными ассоциативными волокнами и со зрительной корой, что обусловливает ее участие в реализации слова. В зоне 37-го поля имеется также небольшая область перекрытия (наложение друг на друга височной и затылочной коры).
По данным Е.П. Кок, представленным в ее монографии «Зрительные агнозии», написанной еще в 1967 году, эта область наиболее приспособлена для овладения и дальнейшего владения словом. Е П. Кок подчеркивает, что слово — это единство зрительного образа предмета и его «звуковой оболочки», и, следовательно, наличие в одной зоне мозга слуховой и зрительной коры способствует выработке прочных образно-вербальных ассоциаций.
Слово и его зрительный образ становятся прочно спаянны.
Чем прочнее эта «спайка», тем надежнее слово хранится в памяти и, напротив, чем она слабее, тем легче слово забывается (амнезия слова).
А.Р. Лурия пишет, что слуховое восприятие включает анализ синтез доходящих до субъекта сигналов уже на первых этапах их поступления.
Из этого следует, что процесс восприятия речи базируется не только на физическом слухе, но и на способности к анализу услышанного. Функции такого анализа приписаны преимущественно вторичному височному полю 22, расположенному в верхней височной области.
Именно оно ответственно за дискретное восприятие звуков речи, в том числе, что принципиально важно, и за выделение из них акустических образов сигнальных (смыслоразличительных) признаков, получивших название фонематических.
Признается также, что фонематическая система языка формируется при непосредственном участии артикуляционного аппарата, благодаря чему вырабатываются и упрочиваются акустико-артикуляционные связи.
Помимо собственно коркового уровня слуховой зоны, имеется базальное слуховое поле 20 и медиальный («глубокий») висок. Этот отдел мозга входит в так называемый «круг Пейпеца» (гиппокамп — ядра зрительного бугра — перегородки и мамиллярные тела — гипоталамус).
Медиальные отделы виска тесно связаны с неспецифическими образованиями лимбико-ретикулярного комплекса (отдела мозга, регулирующего тонус коры) — (рис. 12, цв. вкл).
Такой состав медиального виска обусловливает его важнейшую особенность — способность регулировать состояние активности коры мозга в целом, процессов нейродинамики, вегетативной сферы, а в рамках высшей психической деятельности — эмоций, сознания и памяти.
Зрительная кора
Первичная зрительная кора простирается с обеих сторон вдоль шпорной борозды на медиальной поверхности затылочной Доли и распространяется на конверситальную поверхность затылочного полюса. Ядерная зона зрительной коры — это первичное корковое поле 17. Вторичные поля коры (18, 19) составляют широкую зрительную сферу. По отношению к принципу функционирования этой зоны актуален тот же пересмотр принципов Рефлекторной теории ощущений, о котором упоминалось при освещении функциональной специализации височной (слуховой) коры. В результате этого пересмотра зрительное восприятие стало рассматриваться не как пассивный процесс, а как активное действие
Основным отличием деятельности зрительной, как и кожно-кинестетической, теменной коры, является то, что воспринимаемые ею сигналы не выстраиваются в последовательные ряды, а объединяются в одновременные группы Благодаря этому обеспечиваются сложные зрительные дифференцировки, предполагающие способность выделять тонкие оптические признаки При очаговых поражениях этой области возникает нередко встречающаяся в клинической практике оптическая агнозия. Еще в 1898 году Э Лессауэр (Е Lissauer) обозначил ее как «апперцептивную душевную слепоту» и отметил, что больные, страдающие ею, не узнают зрительных изображений даже знакомых предметов, хотя могут узнавать их на ощупь. Впоследствии оптическая зрительная агнозия была подробно изучена и описана Е. П. Кок, Л С Цветковой и др., показавшими ее связь с амнестической афазией
В наиболее высокой по иерархии теменно-затылочной коре, представляющей собой области, где соединяются центральные концы зрительного и тактильного анализаторов («зоны перекрытия»), стимулы внешней среды объединяются в «симультанные синтезы», позволяющие воспринимать одномоментно сложные изображения, например, сюжетные картины. По представлениям нейропсихологии, поражение данной области приводит к нарушениям симультанного зрительного гнозиса и системно обусловленной семантической афазии.
Тактильная кора
Синтез тактильных сигналов осуществляют теменные отделы коры головного мозга, аналогично тому, как теменно-затылочная область осуществляет оптическое восприятие Ядерной зоной этого анализатора является область задней центральной извилины Первичные поля тактильной коры обеспечивают кожно-кинестетическую чувствительность на физическом уровне (поле 3) Вторичные оке поля (2, 1, 5, 7) специализированы в отношении сложной дифференциации тактильных сигналов (стереогноза) Благодаря им возможно распознавание предметов на ощупь.
Двигательная кора
Двигательный «анализатор» понимается как состоящий из двух, совместно работающих отделов мозговой коры (постцентяльного и прецентрального) Вместе они составляют сенсомоторн ую область коры.
Постцентральная кора, или, иначе, нижнетеменная кора, наравне первичных полей (10, 11, 47) принимает тактильные сигналы и перерабатывает их в тактильные ощущения, в том числе и речевые
На уровне вторичных полей (2, 1, 5, 7) она обеспечивает реализацию отдельных поз — кинестезии тела, конечностей, речевого аппарата
В рамках переднего блока мозга левого полушария для речевой функции наиболее значимой является передняя центральная извилина — премоторная кора на уровне вторичных полей (6, 8) Она обеспечивает реализацию различных двигательных актов, представляющих собой серию последовательных движений и носящих название динамического или, иначе, эфферентного, прак сиса Он, в свою очередь, составляет второе, дополнительно к афферентному, произвольное двигательное звено. Важно, что премоторная кора является способной не только выстраивать, но и запоминать двигательные последовательности (кинетические мелодии), без чего в рамках речевой деятельности было бы невозможным плавное произнесение слов и фраз.
На уровне третичного поля 45 двигательная кора обеспечивает способность создавать программы различных видов деятельности. За счет этой области происходит оперирование типовыми программами освоенных действий, в том числе и речевых, например, синтаксическими моделями предложений.
Ниже приведена таблица номеров полей мозга различных уровней (по Бродману)
Таблица 2
Мо дальности |
Слуховая