Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


НЕЙМАН фон (Neumann von) Джон (Янош, Ио­ганн) (1903—1957) — математик, философ (США).




НЕЙМАН фон (Neumann von) Джон (Янош, Ио­ганн) (1903—1957) — математик, философ (США). Член Национальной академии США, Американского философского общества, Американской Академии ис­кусств и наук, Академии деи Линчей (Италия), Лом­бардского института наук и литературы, Нидерландской королевской академии наук и искусств, Перуанской ака­демии точных наук, почетный доктор ряда университе­тов США и других стран; член Комиссии по атомной энергии США (с 1954). Важнейшие труды: "Аксиомати­ческое построение теории множеств" (1925), "Об осно­ваниях квантовой механики" (совместно с Гильбертом и Л.Нордгеймом) (1926), "Теоретике—вероятностное по­строение квантовой механики" (1927), "Математическое обоснование квантовой механики" (1932), "Теория игр и экономическое поведение" (1947, совместно с О.Моргенштерном), "Общая и логическая теория автоматов" (1948, доклад на симпозиуме "Механизмы мозга в пове­дении" в Калифорнийском технологическом институте), "Вероятностная логика и синтез надежных организмов из ненадежных компонент" (1952), "Теория самовоспро­изводящихся автоматов" (1954), "Вычислительная ма­шина и мозг" (1958). Шеститомное собрание сочинений Н. опубликовано Оксфордским университетом в 1961— 1964. Н. родился в Будапеште (Австро—Венгрия) в се­мье банкира Макса фон Н. В 1914 поступил в одно из лучших учебных заведений того времени — лютеран­скую гимназию Будапешта, где под руководством педа­гога Л.Ратца ярко проявилась его математическая ода­ренность. Физик Е.Вигнер, одноклассник Н., в своей но­белевской речи с благодарностью поминал имя их учи­теля, который ввел обучение Н. в рамки традиций все­мирно известной Будапештской математической школы Л.Фейера. По окончании гимназии Н. поступил на хи­мический факультет Федеральной высшей технической школы Цюриха (Швейцария) и одновременно на мате­матический факультет Университета Будапешта. В это время определяющее влияние на Н. оказали математики Вейль и Э.Шмидт (Берлин). Н. был автодидактом, полу­чая необходимые знания в научных контактах с ведущи­ми математиками того времени и из литературы по спе­циальности: "... когда его что-нибудь интересовало, ра­ботоспособность его становилась практически безгра­ничной..." (из воспоминаний жены Н., Клары фон Н., ав­тора первых программ для компьютеров, в разработку которых Н. позднее внесет определяющий вклад). В 1925 Н. защитил диссертацию "Аксиоматическое пост­роение теории множеств" на звание доктора философии в Университете Будапешта (одновременно с этим полу­чил диплом инженера-химика в Цюрихе, однако химия Н. не привлекла) и стал участником "Семинара о мате­рии" Гильберта (главы Геттингенского математического

680

института, Германия) в части, касающейся проблем ак­сиоматики теории множеств, а позднее — функциональ­ного анализа. Приват-доцент университетов Берлина (1927) и Гамбурга (1929). С 1929 Н. — приглашенный преподаватель Принстонского университета (профессор Принстонского университета с 1931). С 1933 и до ухода из жизни Н. — профессор Принстонского института высших исследований. С конца 1930-х Н. занимается проблемами гидродинамики — науки, включающей в себя, как писал Г.Биркгофф, "...физику двух из трех са­мых общих состояний материи — жидкого и газообраз­ного...". Результатом явилось создание Н. современного численного анализа для решения принципиально нели­нейных задач. Н. также разработал эвристический иод-ход к исследованиям задач данного типа. Основными этапами эвристического подхода являются "...накопле­ние сведений об изучаемом явлении на нестрогом эври­стическом уровне на основе численного эксперимента, создание интуитивной схемы явления, проверка ее на следующем этапе численного эксперимента и, наконец, построение строгой теории...". Свою точку зрения на предмет математики и ее соотношения с другими наука­ми Н. изложил в эссе "Математик" и статье "Роль мате­матики в науках и обществе". По Н., "...самая жизненно важная отличительная особенность математики состоит в ее совершенно особой связи с естественными науками или... с любой наукой, интерпретирующей опыт на бо­лее высоком уровне, нежели чисто описательный. Боль­шинство людей... согласятся с тем, что математика не является эмпирической наукой или что она, по крайней мере, по образу действий отличается в некоторых весь­ма важных отношениях от методов эмпирических наук. Тем не менее, развитие математики весьма тесно связа­но с естественными науками. Один из ее разделов — ге­ометрия — зародился как естественная, эмпирическая наука. Некоторые из наиболее ярких идей современной математики... отчетливо прослеживаются до своих ис­токов в естественных науках. Математические методы пронизывают "теоретические разделы" естественных наук и доминируют в них. Главный критерий успеха в современных эмпирических науках все в большей мере усматривают в том, насколько эти науки оказываются в сфере действия математического метода или почти ма­тематических методов физики. Неразрывная цепь по­следовательных псевдоморфоз, пронизывающая есте­ственные науки, сближающая их с математикой и почти отождествляемая с идеей научного прогресса, стано­вится все более очевидной. В биологию... проникают химия и физика, в химию — экспериментальная и тео­ретическая физика, в физику — наиболее изощренные в своей математической форме методы теоретической физики. Природа математики обладает весьма замеча-

тельной двойственностью. Эту двойственность необхо­димо осознать, воспринять и включить ее в круг пред­ставлений, неотъемлемых от предмета. Эта двуликость присуща лицу математики, и я не верю, что можно прий­ти к какому-либо упрощенному единому взгляду на ма­тематику, не пожертвовав при этом существом дела... Я считаю, что довольно хорошее приближение к истине (которая слишком сложна, чтобы допускать что-нибудь, кроме аппроксимации) состоит в следующем. Матема­тические идеи берут свое начало в эмпирике, но генеа­логия их подчас длинна и неясна. Но коль скоро эти идеи возникли, они обретают независимое, самостоя­тельное существование. Их лучше сравнивать с художе­ственными произведениями, подчиняющимися чисто эстетическим оценкам, чем с чем-либо другим и, в част­ности, с эмпирическими науками. Однако... когда мате­матическая дисциплина отходит достаточно далеко от своего эмпирического источника, а тем более, когда она принадлежит ко второму или третьему поколению и лишь косвенно вдохновляется идеями, восходящими к "реальности", над ней нависает... серьезная опасность. Она все более превращается в... искусство ради искусст­ва... существует серьезная опасность... что математичес­кая дисциплина начнет развиваться по линии наимень­шего сопротивления, что поток вдали от источника раз­делится на множество мелких рукавов и что соответст­вующий раздел математики обратится в беспорядочное нагромождение деталей и всякого рода сложностей... на большом расстоянии от эмпирического источника или в результате чересчур абстрактного инбридинга /скрещи­вания близкородственных форм — С. С. / математичес­кой дисциплине грозит вырождение. При появлении то­го или иного раздела математики стиль обычно бывает классическим. Когда же он обретает признаки перерож­дения в барокко, это следует расценивать, как сигнал опасности... При наступлении этого этапа единствен­ный способ исцеления... состоит в том, чтобы возвра­титься к источнику и впрыснуть более или менее прямо эмпирические идеи. Я убежден, что это всегда было не­обходимо для того, чтобы сохранить свежесть и жизнен­ность математической теории, и что это положение ос­тается в силе и в будущем..." (эссе "Математик"). Н. пи­сал о том, что "...математика не должна ограничиваться ролью поставщика решений различных задач, возника­ющих в естественных науках; наоборот, естествознание должно стать неисчерпаемым источником постановок новых чисто математических проблем...". ("Роль мате­матики в науках и обществе"). С 1940 Н. консультирует военно-научные учреждения США. В конце 1940-х в Принстонском институте высших исследований под ру­ководством Н. была разработана архитектура (логичес­кая схема) компьютера ДЖОНИАК (названного в его

681

честь), ставшая прототипом архитектур первой и всех следующих генераций компьютерных систем. Компью­теры типа ДЖОНИАК создавались для обработки дан­ных термоядерных исследований Университета Илли­нойса (Чикаго), национальной лаборатории "Лос-Ала­мос", корпорации RAND. После работ над проектами компьютерных архитектур, Н. приступил к работам по созданию общей логической теории автоматов, науки (по А.Берксу) об основных принципах, общих для авто­матов искусственных (цифровых и аналоговых компью­теров, систем управления) и естественных [нервной си­стемы человека, самовоспроизводящихся клеток (струк­тур), организмов в эволюционных аспектах]. Целью предпринятых Н. исследований было упорядочение по­нятий и принципов структур и организаций искусствен­ных и естественных систем (автоматов), роли в них ин­формации и языковых средств, управления и (пере)программирования таких автоматов. Теория автоматов Н., как и кибернетика Винера, лежит на стыке физиологии, логики, теории связи и многих других наук; при этом ос­новные различия между теориями Н. и Винера в основ­ном не принципиальны и обусловлены личностным зна­нием их авторов. Винер, участвовавший в разработке средств связи и управления ПВО, в основания своей ки­бернетики поместил непрерывную математику, управля­ющие системы и принципы обратной связи для управле­ния и целенаправленного поведения. Н. же, разрабаты­вавший компьютеры первого поколения, в основу своей теории автоматов положил дискретную математику и цифровые компьютеры, где фактически также применял обратную связь (в блок-схемах программ и в конструк­ции машин). Кроме работ в области дискретной матема­тики Н. работал и над созданием (непрерывной) модели самовоспроизведения, основанной на математическом аппарате нелинейных дифференциальных уравнениях в частных производных, описывающих химически реаги­рующие и диффундирующие вещества (предвосхищая, тем самым, синергетические модели). Активные науч­ные контакты Н. и Винера (Н. написал рецензию на кни­гу Винера "Кибернетика, или Управление и связь в жи­вотном и машине") дают возможность заключить, что они были знакомы с сильными и слабыми моментами концепций друг друга (однако при этом их цели и под­ходы разнились). В работе "Общая и логическая теория автоматов" Н. пишет: "...В естественных науках автома­ты играли роль, значение которой непрерывно возраста­ло и которая к настоящему времени стала весьма значи­тельной. Этот процесс развивался несколько десятиле­тий. В конце этого периода автоматы стали захватывать и некоторые области математики, в частности (и не только) математическую физику и прикладную матема­тику. Их роль в математике представляет интересный

аналог некоторых сторон жизнедеятельности организ­мов в природе. Как правило, живые организмы гораздо более сложны и тоньше устроены и, следовательно, зна­чительно менее понятны в деталях, чем искусственные автоматы. Тем не менее, рассмотрение некоторых зако­номерностей устройства живых организмов может быть весьма полезно при изучении и проектировании автома­тов. И наоборот, многое из опыта нашей работы с искус­ственными автоматами может быть до некоторой степе­ни перенесено на наше понимание естественных орга­низмов. При сравнении живых организмов и, в частнос­ти, наиболее сложно организованной системы — нерв­ной системы человека — с искусственными автоматами следует иметь в виду следующее ограничение. Естест­венные системы чрезвычайно сложны, и ясно, что про­блему их изучения необходимо подразделить на не­сколько частей. Один метод такого расчленения, особен­но важный в нашем случае, заключается в следующем. Организмы можно рассматривать как составленные из частей, из элементарных единиц, которые в определен­ных пределах автономны. Поэтому можно считать пер­вой частью проблемы исследование структуры и функ­ционирования таких элементарных единиц в отдельнос­ти. Вторая часть проблемы состоит в том, чтобы понять, как эти элементы организованы в единое целое и каким образом функционирование целого выражается в терми­нах этих элементов... Аксиоматизация поведения эле­ментов означает следующее. Мы принимаем, что эле­менты имеют некоторые вполне определенные внешние функциональные характеристики, т.е. их следует счи­тать "черными ящиками". Это означает, что их рассмат­ривают как автоматы, внутреннюю структуру которых нет необходимости раскрывать и которые, по предполо­жению, реагируют на некоторые точно определенные раздражители (стимулы), посредством точно определен­ных реакций. Установив это, мы можем перейти к изуче­нию более сложных организмов, которые можно пост­роить из этих элементов, — их структуры, функциони­рования, связей между элементами и общих теоретиче­ских закономерностей, обнаруживаемых в том слож­ном синтезе, который представляют собой рассматри­ваемые организмы...". Позднее, во введении к работе "Вероятностная логика и синтез надежных организмов из ненадежных компонент", написанной на основе лек­ций о надежности живых систем, прочитанных в Кали­форнийском технологическом институте, Н. пишет о ро­ли ошибок в "...логике и физическом орудии логики — синтезировании автоматов... ошибка рассматривается не как исключительное событие, результат или причи­на какой-либо неправильности, но как существенная часть рассматриваемого процесса. Значение понятия ошибки в синтезировании автоматов вполне сравнимо

682

со значением обычно учитываемого фактора правиль­ной логической структуры, которая имеется в виду. Предлагаемая трактовка ошибки является неудовлетво­рительной и дается лишь для определенной ситуации. По убеждению автора, которого он придерживается уже много лет, ошибку следует искать при помощи термоди­намических методов так, как это делается с информаци­ей в работах Лео Сцилларда и Клода Шеннона...". В 1954, отвечая на вопросы анкеты Национальной акаде­мии наук США, Н. в качестве собственных наивысших научных достижений отметил "только" математическое обоснование квантовой механики, теорию неограничен­ных операторов и эргодическую теорию. Отдавая долж­ное научной скромности выдающегося математика 20 в., нельзя не отметить, что в современной математике нет почти ни одного направления (за исключением, пожа­луй, теории чисел), которое бы ни испытало в своем раз­витии влияния идей Н. В начале 1955 Н. получил при­глашение выступить на Силлименовских академичес­ких чтениях (Йельский университет), что считается привилегией и высокой честью среди ученых всех стран. Однако вследствие тяжелого онкологического за­болевания Н. выступление на тему "Вычислительная машина и мозг" состояться так и не смогло.

C.B. Силков





Поделиться с друзьями:


Дата добавления: 2018-11-11; Мы поможем в написании ваших работ!; просмотров: 181 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

2523 - | 2183 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.