Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Коррекция на логалку тестовых баллов




(задания с двумя ответами)

При подсчете результатов выполнения заданий испытуемыми обычно выбирают дихотомическую оценку. За правильное выполнение задания испытуемый получает один балл, а за неправильный ответ или пропуск — нуль. Суммирование всех единиц позволяет вычислить индивидуальный балл испытуемого, который в случае дихотомической оценки просто равен количеству правильно выполненных заданий в тесте.

Если тест состоит из заданий с двумя ответами, то индивидуальные баллы испытуемых будут существенно искажены эффектом случайного угадывания ответов. Поэтому индивидуальные баллы необходимо скорректировать с поправкой на догадку. При выполнении заданий с двумя ответами коррекция баллов осуществляется довольно просто. Для каждого испытуемого вычисляется разность между числом правильно и неправильно выполненных им заданий теста.

Например, если в тесте из 60 заданий испытуемый выполнил правильно 50, а неправильно — 10, то скорректированный балл будет 50 - 10 = 40. Для более слабого ученика, выполнившего правильно всего 30 заданий из 60, балл после коррекции станет равен 30 — 30 = 0. Таким образом, балл сильного ученика уменьшился в результате коррекции весьма незначительно, всего на 10 единиц. Совсем иначе обстоит дело с баллом того, кто выполнил правильно всего половину заданий теста. После коррекции он получит нуль баллов, так как в половине заданий он вполне мог угадать правильный ответ.

Для теста из заданий с двумя ответами формулу коррекции индивидуальных баллов можно записать в виде [23]


где i — номер любого испытуемого группы; Х'i скорректированный балл i-го испытуемого; Х i тестовый балл до коррекции; Хi — число неправильно выполненных или пропущенных заданий теста, а сумма Xi + Wi равна п — числу заданий в тесте:

Формула коррекции обладает определенными недостатками, снижающими точность тестовых измерений. Это связано с тем, что в основу ее построения положен ряд довольно искусственных предположений, нередко не согласующихся с практикой выполнения теста. В частности, далеко не в полной мере выполняется предположение о том, что все неправильные ответы являются следствием случайного угадывания. Без сомнения, в практике контроля часть неправильных ответов основывается на ошибочном выполнении заданий теста. Столь же условно и предположение об одинаковой вероятности выбора каждого ответа задания теста. Вполне понятно, что с точки зрения привлекательности все ответы разные, и потому разной должна быть вероятность их выбора, если попытаться отразить реальную ситуацию выполнения теста. Правда, ряд специалистов в сфере разработки тестов полагает, что угадыванием можно пренебречь, если тест имеет достаточно большое количество заданий. Другой путь снижения эффекта угадывания — увеличение числа ответов к заданиям теста.

Достоинства формулы коррекции связаны с явно выраженной в ней возможностью педагогической интерпретации разности между числом правильных и неправильных ответов. Анализ значений этой разности для слабых и сильных испытуемых показывает определенную закономерность. Для хороших учеников, получивших в процессе тестирования высокие индивидуальные баллы, число вычитаемых на догадку баллов уменьшается, для слабых, с низкими индивидуальными баллами, наоборот, увеличивается. Эта закономерность вполне согласуется с педагогической логикой: коррекция нужна в основном для тех, кто не знает и идет по этой причине к правильному ответу путем догадки.

Задания с тремя ответами

Для снижения вероятности угадывания правильного ответа слабыми испытуемыми число ответов стараются увеличить хотя бы до трех. Ниже приводится ряд заданий, достаточно удачных с точки зрения требований формы с тремя ответами, из которых необходимо выбрать один правильный.

Задание 12





Поделиться с друзьями:


Дата добавления: 2018-10-14; Мы поможем в написании ваших работ!; просмотров: 440 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2430 - | 2229 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.