Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Внешнее сопротивление R есть сумма двух сопротивлений 2 страница

319. По тонкому полукольцу радиуса R = 10 см равномерно распределен заряд с линейной плотностью τ = 1 мкКл/м. Определить напряженность  и потенциал φ электрического поля, создаваемого распределенным зарядом в центре кольца.

320. На двух параллельных бесконечных плоскостях равномерно распределены заряды с поверхностными плотностями σ1 = -4σ, σ2 = 2σ, где σ = 40 нКл/м2. 1) Найти напряженность Е электрического поля в трех областях: слева, между и справа от плоскостей; 2) на чертеже указать направление вектора  для каждой области.

321. На двух концентрических сферах радиусом R и 2 R равномерно распределены заряды с поверхностными плотностями σ1 = σ и σ2 = -σ, где σ = 0,1 мкКл/м2. Требуется: 1) найти зависимость Е(r) напряженности электрического поля от расстояния от центра сфер для трех областей: внутри сфер, между сферами и вне сфер; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r = 3 R и указать направление вектора .

322. На двух бесконечных параллельных плоскостях равномерно распределены заряды с поверхностными плотностями σ1 = 2σ и σ2 = σ, где σ= 20 нКл/м. Требуется: 1) найти напряженность Е электрического поля в трех областях: слева от плоскостей, между плоскостями и справа от плоскостей; 2) на чертеже указать направление вектора  для каждой области.

323. На двух бесконечных параллельных плоскостях равномерно распределены заряды с поверхностными плотностями σ1 = σ, σ2 = -2σ, где σ = 20 нКл/м2. Требуется: 1) найти напряженность Е электрического поля в трех областях: слева, между и справа от плоскостей, 2) на чертеже указать направление вектора  для каждой области.

324. На двух концентрических сферах радиусами R и. 2 R равномерно распределены заряды с поверхностными плотностями σ1 = 4σ и σ2 = σ, где σ = 30 нКл/м2. Требуется: 1) найти зависимость Е(r) напряженности электрического поля от расстояния до центра сфер для трех областей: внутри сфер, между сферами и вне сфер; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r = 1,5 R и указать направление вектора .

325. На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 = -2σ и σ2 = σ, где σ = 50 нКл/м2. Требуется: 1) найти зависимость Е(r) напряженности электрического поля от расстояния до оси цилиндров для трех областей: внутри, между и вне цилиндров; 2) вычислить напряженность Е в точке, удаленной от оси цилиндров на расстояние r = 1,5 R и указать направление вектора .

326. На двух концентрических сферах радиусом R и 2 R равномерно распределены заряды с поверхностными плотностями σ1 = -4σ и σ2 = σ, где σ = 50 нКл/м2. Требуется: 1) найти зависимость Е(r) напряженности электрического поля от расстояния до центра сфер для трех областей: внутри сфер, между сферами и вне сфер; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r = 1,5 R и указать направление вектора .

327. На двух коаксиальных бесконечных цилиндрах радиусами R и 2 R равномерно распределены заряды с поверхностными плотностями σ1 = σ и σ2 = -σ, где σ = 60 мкКл/м2. Требуется: 1) найти зависимость Е(r) напряженности электрического поля от расстояния до оси цилиндров для трех областей: внутри, между и вне цилиндров; 2) вычислить напряженность Е в точке, удаленной от оси цилиндров на расстояние r = 3 R, и указать направление вектора .

328. На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 = -σ и σ2 = 4σ, где σ = 30 НКл/м2. Требуется: 1) найти зависимость Е(r) напряженности электрического поля от расстояния до оси цилиндров для трех областей: внутри, между и вне цилиндров; 2)вычислить напряженность Е в точке, удаленной от оси цилиндров на расстояние r = 4 R, и указать направление вектора .

329. На двух концентрических сферах радиусом R и 2 R равномерно распределены заряды с поверхностными плотностями σ1 = -2σ и σ2 = σ, где σ = 0,1 мкКл/м2. Требуется: 1) найти зависимость напряженности электрического поля от расстояния до центра сфер для трех областей: внутри сфер, между сферами и вне сфер; 2) вычислить напряженность Е в точке, удаленной от центра на расстоянии r = 3R, и указать направление вектора .

330. Четыре одинаковые капли ртути, заряженные до потенциала φ1 = 10 В, сливаются в одну. Каков потенциал φ образовавшейся капли?

331. В однородное электрическое поле напряженностью Е = 200 В/м влетает вдоль силовых линий электрон со скоростью v 0 = 2 Мм/с. Определить расстояние l, которое пройдет электрон до точки, в которой его скорость будет равна половине начальной.

332. Электрическое поле создано бесконечной заряженной прямой линией с равномерно распределенным зарядом (τ = 10 нКл/м). Определить кинетическую энергию Wк2 электрона на расстоянии а, если на расстоянии от линии его кинетическая энергия Wк1 = 200 эВ.

333. Шарик массой m = 40 мг, имеющий положительный заряд q = 1 нКл, движется со скоростью v = 10 см/с. На какое расстояние минимальное r может приблизиться шарик к положительному точечному заряду q0 = 1,33 нКл?

334. Шарик массой m = 1 г и зарядом q = 10 нКл перемещается из точки 1, потенциал которой φ1 = 600 В, в точку 2, потенциал которой φ2 = 0. Найти его скорость в точке 1, если в точке 2 она стала равной v2 = 20 см/с.

335. Найти скорость электрона, прошедшего разность потенциалов U, равную 100 В.

336. Электрон движется вдоль силовой линии однородного электрического поля. В некоторой точке поля с потенциалом φ1 = 100 В электрон имел скорость v 1 = 6 Мм/с. Определить потенциал φ 2 точки поля, дойдя до которой электрон потеряет половину своей скорости.

337. Найти отношение скоростей ионов Cu ++ и К +, прошедших одинаковую разность потенциалов.

338. Электрон с энергией W = 400 эВ (в бесконечности) движется вдоль силовой линии по направлению к поверхности металлической заряженной сферы радиусом R = 10 см. Определить минимальное расстояние а, на которое приблизится электрон к поверхности сферы, если заряд ее q = -10 нКл.

339. Электрическое поле создано заряженным проводящим шаром, потенциал φ которого 300 В. Определить работу сил поля по перемещению заряда q = 0,2 мкКл из точки, отстоящей от поверхности шара на расстоянии R, до точки, отстоящей на расстоянии 3 R.

340. Конденсатор электроемкостью С1 = 0,6 мкФ был заряжен до разности потенциалов U 1 = 300 В и соединен параллельно со вторым конденсатором электроемкостью C 2 = 0,4 мкФ, заряженным до разности потенциалов U 2 = 160 В. Найти заряд, перетекший с пластин первого конденсатора на второй.

341. Конденсатор электроемкостью С1 = 0,2 мкФ был заряжен до разности потенциалов U1 = 320 В. После того, как его соединили параллельно со вторым конденсатором, заряженным до разности потенциалов U 2 = 450 В, напряжение на нем изменилось до 400 В. Вычислить емкость С2 второго конденсатора.

342. Между пластинами плоского конденсатора находится плотно прилегающая стеклянная пластинка (ε = 7). Конденсатор заряжен до разности потенциалов U = 100 В. Какова будет разность потенциалов, если вытащить стеклянную пластинку из конденсатора?

343. К воздушному конденсатору, заряженному до разности потенциалов U 1 = 500 В и отключенному от источника напряжения, присоединили параллельно второй конденсатор таких же размеров и формы, но с другим диэлектриком (стекло). Определить диэлектрическую проницаемость стекла ε, если после присоединения второго конденсатора разность потенциалов уменьшилась до U 2 = 70 В

344. Два конденсатора емкостями С1 = 5 мкФ и С2 = 8 мкФ соединены последовательно и присоединены к батарее с э.д.с. ε = 80 В. Определить заряды q 1 и q 2 конденсаторов и разности потенциалов U 1 и U 2 между их обкладками.

345. Пластины плоского конденсатора изолированы друг от друга слоем диэлектрика. Конденсатор заряжен до разности потенциалов U = 1 кВ и отключен от источника напряжения. Определить диэлектрическую проницаемость диэлектрика, если при его удалении разность потенциалов между пластинами конденсатора возрастет до 3 кВ.

346. Три конденсатора (С 1 = 1 мкФ, С2 = 2 мкФ, С 3 = 3 мкФ) соединены последовательно и присоединены к источнику напряжения (U = 220 В). Найти заряд и напряжение на каждом конденсаторе.

347. Два одинаковых плоских воздушных конденсатора емкостью С = 100 пФ каждый соединены в батарею последовательно. Определить, на сколько изменится емкость С батареи, если пространство между пластинами одного из конденсаторов заполнить парафином.

348. Пространство между пластинами плоского конденсатора заполнено двумя слоями диэлектрика: стекла толщиной d 1 = 0,2 см и парафина толщиной d 2 = 0,3 см. Разность потенциалов между обкладками U = 300 В. Определить напряженность Е поля и падение потенциала в каждом из слоев.

349. Два шара, радиусы которых 5 и 8 см, а потенциалы соответственно 120 и 50 В, соединяют проводом. Найти потенциалы шаров после их соединения и заряд, перешедший с одного шара на другой.

350. Плоский конденсатор с площадью пластин S = 300 см2 каждая заряжен до разности потенциалов U = 103 В. Расстояние между пластинами d = 4 см. Диэлектрик – стекло (ε = 7). Какую нужно совершить работу, чтобы удалить стекло из конденсатора? Конденсатор отключен от источника.

351. Энергия плоского воздушного конденсатора W 1 = 2·10-7 Дж. Определить энергию конденсатора после заполнения его диэлектриком с диэлектрической проницаемостью ε = 2, если конденсатор отключен от источника питания.

352. Энергия плоского воздушного конденсатора W 1 = 4·10-7 Дж. Определить энергию конденсатора после заполнения его диэлектриком с диэлектрической проницаемостью ε = 4, если конденсатор подключен к источнику питания.

353. Пластины плоского конденсатора подключены к источнику с э.д.с 2 В. Определить изменение энергии электрического поля конденсатора, если конденсатор наполовину заполнить диэлектриком с диэлектрической проницаемостью ε = 2. Граница между диэлектриком и воздухом расположена перпендикулярно пластинам. Расстояние между пластинами d = 1 см, площадь пластин S = 50 см2.

354. Пластины плоского конденсатора подключены к источнику с э.д.с 2 В. Определить изменение энергии электрического поля конденсатора, если конденсатор наполовину заполнить диэлектриком с диэлектрической проницаемостью ε = 2. Граница между диэлектриком и воздухом расположена параллельно пластинам конденсатора. Расстояние между пластинами d = 1 см, площадь пластин S = 50 см2.

355. Разность потенциалов между пластинами плоского конденсатора 100 В. Площадь каждой пластины 200 см2, расстояние между пластинами 0,5 мм, пространство между ними заполнено парафином (ε = 2). Определить силу притяжения пластин друг к другу и энергию поля конденсатора.

356. Плоский конденсатор заполнен диэлектрикоми на егопластины подана некоторая разность потенциалов. Его энергия при этом равна 2·10-5 Дж. После того как конденсатор отключили от источника напряжения, диэлектрик вынули из конденсатора. Работа, которую надо было совершить против сил электрического поля, чтобы вынуть диэлектрик, равна 7·10-5 Дж. Найти диэлектрическую проницаемость диэлектрика.

357. Плоский воздушный конденсатор с площадью пластин 100 см2 и расстоянием, между ними 1мм заряжен до 100 В. Затем пластины раздвигаются до расстояния 25 мм. Найти энергию конденсатора до и после раздвижения пластин, если источник напряжения перед раздвижением: 1) не отключается; 2) отключается.

358. Пять параллельно соединенных одинаковых конденсаторов емкостью по 0,1 мкФ заряжаются до общей разности потенциалов U = 30 кВ. Определить среднюю мощность разряда, если батарея разряжается за τ = 1,5·10-6 с. Остаточное напряжение равно 0,5 кВ.

359. Плоский воздушный конденсатор с площадью пластины S = 400 см2 подключен к источнику тока, э.д.с. которого равна 200 В. определить работу внешних сил по раздвижению пластин от расстояния d 1 = 2 см до d 2 = 4 см. Пластины в процессе раздвижения остаются подключенными к источнику.

360. Э.д.с. батареи 12 В, сила тока короткого замыкания 5 А. Какую наибольшую мощность можно получить во внешней цепи, соединенной с такой батареей?

361. Э.д.с. батареи ε = 80 В, внутреннее сопротивление r1 = 5 Ом. Внешняя цепь потребляет мощность Р = 100 Вт. Определить силу тока I в цепи, напряжение U, под которым находится внешняя цепь, и ее сопротивление R.

362. Обмотка катушки из медной проволоки при t1 = 14 ºС имеет сопротивление R 1 = 10 Ом. После пропускания тока сопротивление обмотки стало равным R 2 = 12,2 Ом. До какой температуры t 2 нагрелась обмотка? Температурный коэффициент сопротивления меди α = 4,15·10-3 К-1.

363. В сеть с напряжением U = 100 В подключили катушку с сопротивлением R 1 = 2 кОм и вольтметр, соединенные последовательно. Показание вольтметра U = 80 В. Когда катушку заменили другой, вольтметр показал U 2 = 60 В. Определить сопротивление R 2 другой катушки.

364. Э.д.с. батареи ε = 24 В, внутреннее сопротивление r = 2,4 Ом. Определить максимальную мощность Рmax, которая может выделяться во внешней цепи.

365. При внешнем сопротивлении R 1 = 8 Ом сила тока в цепи I1 = 0,8 А, при сопротивлении R 2 = 15 Ом сила тока I 2 = 0,5 А. Определить силу тока Iкз короткого замыкания источника э.д.с.

366. Элемент, имеющий э.д.с. ε = 1,1 В и внутреннее сопротивление r = 1 Ом, замкнут на внешнее сопротивление R = 9 Ом. Найти ток I в цепи, падение потенциала U во внешней цепи и падение потенциала Ur внутри элемента. С каким к.п.д. η работает элемент?

367. Пять последовательно соединенных источников с э.д.с. ε = 1,2 В и внутренним сопротивлением 0,2 Ом каждый замкнуты на внешнее сопротивление R. Какой величины должно быть R, чтобы во внешней цепи выделялась максимальная мощность?

368. Сопротивление гальванометра R Г = 720 Ом, шкала его рассчитана на 300 мкА. Как и какое добавочное сопротивление нужно подключить, чтобы можно было систему включать в цепь с напряжением 300 В?

369. Сопротивление гальванометра R Г = 680 Ом. Какое сопротивление (шунт) нужно подключить к нему, чтобы можно было измерить ток силой 2,5 А? Шкала гальванометра рассчитана на 300 мкА.

370. Сила тока в проводнике равномерно убывает от 20 А до 6 А в течение 6 с. Какой заряд проходит через поперечное течение проводника за последние четыре секунды?

371. Определить напряженность электрического поля в алюминиевом проводнике объемом 10 см3, если при прохождении по нему постоянного тока за время 5 мин выделилось количество теплоты 2,3 кДж. Удельное сопротивление алюминия ρ = 26 нОм×м.

372. Сила тока в проводнике равномерно нарастает от I 0 = 0 до I = 5 А в течение времени 10 с. Определить заряд, прошедший по проводнику.

373. Определить количество теплоты Q, выделившееся за время t = 10 с в проводнике сопротивлением R = 10 Ом, если сила тока в нем, равномерно уменьшаясь, изменилась от I 1 = 10 А до I 2 = 0.

374. За время t = 8 с при равномерно возраставшей силе тока в проводнике сопротивлением R = 8 Ом выделилось количество теплоты Q = 500 Дж. Определить заряд q, прошедший в проводнике, если сила тока в начальный момент времени равна нулю.

375. За время t = 10 с при равномерно возрастающей силе тока от нуля до некоторого максимального значения в проводнике выделилось количество теплоты Q = 40 кДж. Определить среднюю силу тока <I> в проводнике, если его сопротивление R = 26 Ом.

376. Плотность электрического тока в медном проводе равна 10 А/см2. Определить объемную плотность тепловой мощности тока, если удельное сопротивление меди ρ = 17 нОм×м.

377. В проводнике за время t = 10 с при равномерном возрастании силы тока от I1 = 1 А до I2 = 2 А выделилось количество теплоты Q = 5 кДж. Найти сопротивление R проводника.

378. Сила тока в проводнике сопротивлением R = 10 Ом за время t = 50 с равномерно нарастает от I1 = 5 А до I 2 = 10 А. Определить количество теплоты Q, выделившееся за это время в проводнике.

379. За время t = 20 с при силе тока, равномерно возрастающей от нуля до некоторого максимума, в проводнике сопротивлением R = 5 Ом выделилось количество теплоты Q = 4 кДж. Определить скорость нарастания силы тока.

380. В схеме на рис. ε 1 = 2 В, ε 2 = 4 В, R 1 =0,5 Ом и падение потенциала на сопротивлении R 2 (ток через R 2 направлен сверху вниз) равно 1 В. Найти показание амперметра. Внутренним сопротивлением элементов и амперметра пренебречь.

381. В схеме на рис. справа ε 1 = 30 В, ε 2 = 5 В, R 2 = 10 Ом, R 3 = 20 Ом. Через амперметр идет ток в 1 А, направленный от R3 к R1. Найти сопротивление R 1. Сопротивлением батареи и амперметра пренебречь.

382. В схеме на рис. ε1 = ε2 = 100 В, R1 = 20 Ом, R2 = 10 Ом, R3 = 40 Ом, R4 = 30 Ом. Найти показание амперметра. Сопро­тив­ле­нием батарей и ампер­метра пренебречь.

383. В схеме на рис. ε12, R2 = 2 R 1. Во сколько раз ток, текущий через вольтметр, больше тока, текущего через R2? Сопротивлением генераторов пренебречь.

384. В схеме на рис. ε1 = ε2 = 110 В, R1 = 200 Ом, сопротивление вольтметра 1000 Ом. Найти показание вольтметра. Сопротивлением батареи пренебречь. R2 = 100 Ом.

385. Какую силу тока показывает миллиамперметр мА в схеме на рис., если ε1 = 2 В, ε2 = 1 В, R1 = 103 Oм, R2 = 500 Ом, R3 = 200 Ом и сопротивление амперметра равно RА = 200 Ом? Внутренним сопротивлением элементов пренебречь.

 

386. Два элемента с одина­ковы­ми э.д.с. ε1 = ε2 = 2 В и внутренними сопротивлениями r1 = 1 Ом и r2 = 2 Ом замкнуты на внешнее сопротивление R (см. рис.). Через элемент с э.д.с. ε1 течет ток I1 = 1 А. Найти сопротивление R и ток I2, текущий через элемент с э.д.с. ε2. Какой ток I течет через сопротивление R?

387. К двум батареям, соединенным параллельно, подключили электролампу, сопротивление которой 0,5 Ом, э.д.с. батареи ε1 = 12 В, ε2-= 10 В и их внутреннее сопротивление r1 = r2 = 1 Ом. Найти ток, протекающий через лампу.

388. В схеме на рис. ε1 = 2,1 В, ε2 = 1,9 В, R1 = 10 Ом, R2 = 10 Ом и R3 = 45 Ом. Найти силу тока во всех участках цепи. Внутренним сопротивлением элементов пренебречь.

 

389. В схеме на рис. ε1 = 2 В, ε2= 4 В, ε3 = 6 В, R1 = 4 Ом, R2 = 6 Ом и R3 = 8 Ом. Найти силу тока во всех участках цепи. Сопротивлением элементов пренебречь.

 

4. ОСНОВНЫЕ ФОРМУЛЫ

 

Электромагнетизм

1. Связь магнитной индукции  с напряженностью магнитного поля.

,

где m - магнитная проницаемость однородной среды; m 0 - магнитная постоянная. В вакууме m = 1, и магнитная индукция в вакууме

.

2.  Закон Био-Савара-Лапласа

 или

где  - магнитная индукция поля, создаваемого элементом провода длиной  c током I;  - радиус-вектор, направленный от элемента проводника к точке, в которой определяется магнитная индукция; a - угол между радиус-вектором и направлением тока в элементе провода.

3. Принцип суперпозиции магнитных полей

 или

для , созданных элементом тока .

     Направление вектора магнитной индукции  поля, создаваемого прямым током, определяется по правилу буравчика (правого винта). Для этого проводим магнитную силовую линию (штриховая линия на рис.) и по касательной к ней в интересующей нас точке проводим вектор . Вектор магнитной индукции  в точке А направлен перпендикулярно плоскости чертежа от нас.

Рис. 1

4. Магнитная индукция в центре кругового тока

где R - радиус кругового витка.

     Магнитная индукция на оси кругового тока

где h - расстояние от центра витка до точки, в которой определяется магнитная индукция.

     Магнитная индукция поля, создаваемого отрезком провода с током (вывод этой формулы в примере № 1):

     Магнитная индукция поля, создаваемого бесконечно длинным прямолинейным проводником с током:

где r 0 - расстояние от оси провода до точки, в которой определяется магнитная индукция.

     Магнитная индукция поля бесконечно длинного соленоида

B = mm0 nI,

где n - отношение числа витков соленоида N к его длине l.

     5. Сила, действующая на элемент провода с током в магнитном поле (закон Ампера):

,

где  - вектор, равный по модулю длине участка провода и совпадающий по направлению с током; a - угол между направлением тока в проводе и вектором магнитной индукции .

Для однородного магнитного поля и прямого отрезка провода получим:

.

6. Магнитный момент плоского контура с током

,

где  - единичный вектор нормали (положительной) к плоскости контура; I - сила тока, протекающего по контуру; S - площадь контура.

7. Механический вращающий момент, действующий на контур с током, помещенный в однородное магнитное поле:

 или ,

где a - угол между векторами

     8. Сила Лоренца

 или ,

где  - скорость заряженной частицы; a - угол между векторами  и .

Если частица находится одновременно в электрическом и магнитном полях, то на нее действует сила



<== предыдущая лекция | следующая лекция ==>
Внешнее сопротивление R есть сумма двух сопротивлений 1 страница | Внешнее сопротивление R есть сумма двух сопротивлений 3 страница
Поделиться с друзьями:


Дата добавления: 2018-10-18; Мы поможем в написании ваших работ!; просмотров: 290 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2274 - | 2125 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.014 с.