Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Индуктивность в цепи синусоидального тока

    Провод, свёрнутый в форме спирали, называется катушкой (обмоткой). Катушка индуктивности по устройству напоминает обычную катушку ниток. Только в катушке индуктивности на сердечник (каркас) наматывают не нитки, а много витков изолированного провода.

    Главным параметром катушки индуктивности является её индуктивность L. Повторите понятие "индуктивность", в разделе "Явление самоиндукции".

Термин “индуктивность”в электротехнике может означать:

1) параметр проводника (катушки), характеризующий его свойства в отношении величины наводимой в нём ЭДС самоиндукции;

2) собственно катушку, обладающую некоторой индуктивностью.

    На рис. 51 показано условное графическое обозначение катушки индуктивности. К катушке приложено синусоидальное (переменное) напряжение U.

Рис. 51. Условное обозначение катушки индуктивности L. К катушке приложено переменное напряжение.

    Катушкой индуктивности в электротехнике часто называют обмотку трансформатора или электродвигателя.

Через катушку индуктивности, показанную на рис. 51, проходит переменный ток I. Он создает вокруг катушки переменное магнитное поле. Это поле наводит в катушке ЭДС самоиндукции eL. Величина ЭДС самоиндукции, наводимой в катушке, зависит от индуктивности катушки L и скорости изменения тока в цепи I/ t.

    В соответствии с правилом Ленца, ЭДС самоиндукции препятствует протеканию тока в цепи. Препятствие протеканию тока означает, что катушка индуктивности обладает сопротивлением, которое называется индуктивным.

    Индуктивное сопротивление XL можно вычислить по формуле:

(Ом), где:

f - частота приложенного напряжения;

L - индуктивность катушки (Генри).

Из формулы следует, что индуктивное сопротивление зависит от частоты f  приложенного напряжения. С увеличением частоты индуктивное сопротивление катушки увеличивается.

Ток в цепи катушки индуктивности можно определить по закону Ома:

    При повышении частоты приложенного напряжения U индуктивное сопротивление растёт, а ток в цепи уменьшается.

    Катушка индуктивности относится к классу реактивных элементов. К реактивным относятся элементы, в которых происходит обратимое преобразование энергии. В катушке периодически повторяются процессы накопления энергии в магнитном поле катушки и возвращении накопленной энергии генератору.

    Мощность, выделяющаяся в катушке, называется реактивной и определяется по формуле:

,

где "вар" – вольт-ампер реактивный.

    Ток в катушке не совпадает по фазе с напряжением, приложенным к ней. Ток отстает от напряжения по фазе на угол π/2 рад (90 градусов).

 

Рис. 52. Ток в катушке индуктивности отстаёт по фазе от напряжения

Пример 11. Идеальная индуктивность в цепи синусоидального тока

В сеть с действующим значением напряжения 120В частотой f = 50 Гц включена катушка с индуктивностью L= 127 мГн. Определить ток, протекающий через катушку и выделяющуюся в ней реактивную мощность.

Решение.

Идеальная катушка индуктивности обладает только одним параметром – индуктивностью L. Активное сопротивление провода, которым она намотана, не учитывается.

Индуктивность катушки приведена в условии задачи в миллигенри (мГн). В расчётных формулах следует все величины выражать в основной размерности. Поэтому, переведём индуктивность из миллигенри в генри. Приставка "милли" означает одну тысячную долю

127 мГн = 127/1000 Гн = 0,127 Гн.

Индуктивное сопротивление катушки:

ХL=2pfL= 2p · 50 · 0,127 = 40 Ом.

Ток в катушке, по закону Ома:

I= U/XL = 120 /40 = 3 А.

В катушке выделяется реактивная мощность

Q=U · I =120 · 3 = 360 вар.



<== предыдущая лекция | следующая лекция ==>
Математическая запись синусоидальной величины | Конденсатор в цепи синусоидального тока
Поделиться с друзьями:


Дата добавления: 2018-10-18; Мы поможем в написании ваших работ!; просмотров: 192 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2333 - | 2042 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.