Лекции.Орг


Поиск:




Расчет стандартного отклонения ^ для фона контрольной группы




Испытуемые Число пора- Средняя Отклоне- Квадрат от-женных мише-           ние от клонения от ней в серии          средней (d) средней (d2)

19 10

12

15,8 15,8 15,8

-3,2 +5.8 +3,8

10.24 33,64 14,44

15      22   15,8 -6,2 38,44

Сумма (^)d2 =  131,94

131,94

Варианса (s2} = •         = 9,42.

Н-1 14 Стандартное отклонение (?) = ^'варианса = л/9,42 == 3,07.

' Формула для расчетов и сами расчеты приведены здесь лишь в качестве иллюстрации В наше время гораздо проще приоб­рести гакой карманный микрокалькулятор, в котором подобные расчеты уже заранее запрограммированы, и для расчета стан­дартного отклонения достаточно лишь ввести данные, а затем нажать клавишу s.

О чем же свидетельствует стандартное отклонение, равное 3,07? Оказывается, оно позволяет сказать, что большая часть результатов (выраженных здесь числом пораженных мишеней) располагается в пре­делах 3,07 от средней, т.е. между 12,73 (15,8 - 3,07) и 18,87 (15,8 + 3,07).

Для того чтобы лучше понять, что подразумевается под «большей частью результатов», нужно сначала рассмотреть те свойсгва стандарт­ного отклонения, которые проявляются при изучении популяции с нор­мальным распределением.

Статистики показали, что при нормальном распределении «большая часть» результатов, располагающаяся в пределах одного стандартного отклонения по обе стороны от средней, в процентном отношении всегда одна и та же и не зависит от величины стандартного отклонения: она соответствует 68% популяции (т.е. 34% ее элементов располагается слева и 34%-справа от средней):

292

Приложение Б

Точно так же рассчитали, что 94,45% элементов популяции при нормальном распределении не выходит за пределы двух стандартных отклонений от средней:

и что в пределах трех стандартных отклонений умещается почти вся популяция - 99,73 %.

99.73%

Учитывая, что распределение частот фона контрольной группы довольно близко к нормальному, можно полагать, что 68% членов всей популяции, из которой взята выборка, тоже будет получать сходные результаты, т.е. попадать примерно в 13-19 мишеней из 25. Распределе­ние результатов остальных членов популяции должно выглядеть следу­ющим образом:

293

Статистика и обработка данных

99,7%

95,4%

68,3%

34,1 % 34,1 %    2,2%

 

0,13%

13,6%

13,6%

0,13%

 

6,59 9,66 12,73 15,8 18,87 21,94 25,01

- Id +1(7

-2а    +2о

-За          +3а

Гипотетическая популяция,

из которой взята контрольная группа (фон)

Что касается результатов той же группы после воздействия изучаемо­го фактора, то стандартное отклонение для них оказалось равным 4,25 (пораженных мишеней). Значит, можно предположить, что 68% резуль­татов будут располагаться именно в этом диапазоне отклонений от средней, составляющей 16 мишеней, т.е. в пределах от 11,75 (16 — 4,25) до 20,25 (16 + 4,25), или, округляя, 12 — 20 мишеней из 25. Видно, что здесь разброс результатов больше, чем в фоне. Эту разницу в разбросе между двумя выборками для контрольной группы можно графически представить следующим образом:

12,73 15,8  18,87

-la +lo Фон

 

294    Приложение Б

-1о  +1о После воздействия

Поскольку стандартное отклонение всегда соответствует одному и тому же проценту результатов, укладывающихся в его пределах вокруг средней, можно утверждать, что при любой форме кривой нормального распределения та доля ее площади, которая ограничена (с обеих сторон) стандартным отклонением, всегда одинакова и соответствует одной и той же доле всей популяции. Это можно проверить на тех наших выборках, для которых распределение близко к нормальному,-на дан­ных о фоне для контрольной и опытной групп.

Итак, ознакомившись с описательной статистикой, мы узнали, как можно представить графически и оценить количественно степень разбро­са данных в том или ином распределении. Тем самым мы смогли понять, чем различаются в нашем опыте распределения для контрольной группы до и после воздействия. Однако можно ли о чем-то судить по этой разнице - отражает ли она действительность или же это просто артефакт, связанный со слишком малым объемом выборки? Тот же вопрос (только еще острее) встает и в отношении экспериментальной группы, подверг­нутой воздействию независимой переменной. В этой группе стандартное отклонение для фона и после воздействия тоже различается примерно на 1 (3,14 и 4,04 соответственно). Однако здесь особенно велика разница между средними-15,2 и 11,3. На основании чего можно было бы утверждать, что эта разность средних действительно достоверна, т.е.-достаточно велика, чтобы можно было с уверенностью объяснить ее влиянием независимой переменной, а не простой случайностью? В какой степени можно опираться на эти результаты и распространять их на всю популяцию, из которой взята выборка, i. е. утверждать, что потребление марихуаны и в самом деле обычно ведет к нарушению глазодвигатель-ной координации?

На все эти вопросы и пытается дать ответ индуктивная статистика.

Статистика и обработка данных            295

Индуктивная статистика

Задачи индуктивной статистики заключаются в том, чтобы опреде­лять, насколько вероятно, что две выборки принадлежат к одной

популяции.

Давайте наложим друг на друга, с одной стороны, две кривые-до и после воздействия-для контрольной группы и, с другой стороны, две аналогичные кривые для опытной группы. При этом масштаб кривых должен быть одинаковым.

Видно, что в контрольной i руппе разница между средними обоих распределений невелика, и поэтому можно думать, что обе выборки прик длежат к одной и той же популяции. Напротив, в опытной группе большая разность между средними позволяет предположить, что рас­пределения для фона и воздействия относятся к двум различным популяциям, разница между которыми обусловлена тем, что на одну из них повлияла независимая переменная.

Проверка гипотез

Как уже говорилось, задача индуктивной статистики- определять. достаточно ли велика разность между средними двух распределений для того, чтобы можно было объяснить ее действием независимой перемен­ной, а не случайностью, связанной с малым объемом выборки (как,

296    Приложение Б

по-видимому, обстоит дело в случае с опытной группой нашего экспе­римента).

При этом возможны две гипотезы:

1) нулевая гипотеза (Нд), согласно которой разница между распреде­лениями недостоверна; предполагается, что различие недостаточно зна­чительно, и поэтому распределения относятся к одной и той же популя­ции, а независимая переменная не оказывает никакого влияния;

2) альтернативная гипотеза (Н^), какой является рабочая гипотеза нашего исследования. В соответствии с этой гипотезой различия между обоими распределениями достаточно значимы и обусловлены влиянием независимой переменной.

Основной принцип метода проверки гипотез состоит в том, что выдвигается нулевая гипотеза Нд, с тем чтобы попытаться опровергнуть ее и тем самым подтвердить альтернативную гипотезу Hi. Действитель­но, если результаты сгатистического теста, используемого для анализа разницы между средними, окажутся таковы, что позволят отбросить Нд, это будет означать, что верна Нц т.е. выдвинутая рабочая гипотеза подтверждается.

В гуманитарных науках принято считать, что нулевую гипотезу можно отвергнуть в пользу альтернативной гипотезы, если по результа­там статистического теста вероятность случайного возникновения най­денного различия не превышает 5 из 1001. Если же этот уровень достоверности не достигается, считают, что разница вполне может быть случайной и поэтому нельзя отбросить нулевую гипотезу.

Для того чтобы судить о том, какова вероятность ошибиться, принимая или отвергая нулевую гипотезу, применяют статистические методы, соответствующие особенностям выборки.

Так, для количественных данных (см. дополнение Б.1) при распреде­лениях, близких к нормальным, используют параметрические методы, основанные на таких показателях, как средняя и стандартное отклоне­ние. В частности, для определения достоверности разницы средних для двух выборок применяют метод Стьюдента, а для того чтобы судить о различиях между тремя или большим числом выборок,-тест F, или дисперсионный анализ.

Если же мы имеем дело с неколичественными данными или выборки слишком малы для уверенности в том, что популяции, из которых они взяты, подчиняются нормальному распределению, тогда используют непараметрические методы-критерии у2 (.та-квадрат) для качественных данных и критерии знаков, рангов, Манна-Уитни, Вилкоксона и др. для порядковых данных.

Кроме того, выбор статистического метода зависит от того, явля­ются ли те выборки, средние которых сравниваются, независимыми (т. е., например, взятыми из двух разных групп испытуемых) или зависимыми

__'_Разумеется, риск ошибиться будет еще меньше, если окажется, что эта вероятное гь составляет 1 на 100 или, еще лучше, 1 на 1000


297

Статистика и обработка данных


 


(т. е. отражающими результаты одной и той же группы испытуемых до и после воздействия или после двух различных воздействий).

Дополнение Б.З. Уровни достоверности (значимости)

Тот или иной вывод с некоторой вероятностью может оказаться ошибочным, причем эта вероятность тем меньше, чем больше имеется данных для обоснования этого вывода. Таким образом, чем больше получено результатов, тем в большей степени по различиям между двумя выборками можно судить о том, что действительно имеет место в той популяции, из которой взяты эти выборки.

Однако обычно используемые выборки относительно невелики, и в этих случаях вероятность ошибки может быть значительной. В гумани­тарных науках принято считать, что разница между двумя выборками отражает действительную разницу между соответствующими популя­циями лишь в том случае, если вероятность ошибки для этого утвержде­ния не превышает 5%, т.е. имеется лишь 5 шансов из 100 ошибиться, выдвигая такое утверждение. Это так называемый уровень достоверно­сти (уровень надежности, доверительный уровень) различия. Если этот уровень не превышен, то можно считать вероятным, что выявленная нами разница действительно отражает положение дел в популяции (отсюда еще одно название этого критерия-порог вероятности).

Для каждого статистического метода этот уровень можно узнать из таблиц распределения критических значений соответствующих крите­риев (t, /2 и т. д.); в этих таблицах приведены цифры для уровней 5% (0,05), 1% (0,01) или еще более высоких. Если значение критерия для данного числа степеней свободы (см. дополнение Б.4) оказывается ниже критического уровня, соответствующего порогу вероятности 5%, то нулевая гипотеза не может считаться опровергнутой, и это означает, что выявленная разница недостоверна.

Параметрические методы Метод Стьюдента (^-тест)

Это параметрический метод, используемый для проверки гипотез о достоверности разницы средних при анализе количественных данных о популяциях с нормальным распределением и с одинаковой вариан-сой1.

Метод Стьюдента различен для независимых и зависимых выборок. Независимые выборки получаются при исследовании двух различных

' К сожалению, метод Стьюдента слишком часто используют для малых выборок, не убедившись предварительно в том, что данные в соответствующих популяциях подчиняются закону нормального распределения (например, ре­зультаты выполнения слишком легкого задания, с которым справились все испытуемые, или же, наоборот, слишком трудного задания не дают нормального распределения).


298    Приложение Б


 


групп испытуемых (в нашем эксперименте это контрольная и опытная группы). В случае независимых выборок для анализа разницы средних применяют формулу

, м,-м,
1 „2 „2 ' /•^.(-^ V«1 Иг

 

где М ^- средняя первой выборки;

Мд-средняя второй выборки;

s^ -стандартное отклонение для первой выборки;

s^- стандартное отклонение для второй выборки;

Hi и Ид-число элементов в первой

и второй выборках.

Теперь осталось лишь найти в таблице значений t (см. дополнение Б. 5) величину, соответствующую п — 1 степеням свободы, где и-общее число испытуемых в обеих выборках (см. дополнение Б.4). и сравнить эту величину с результатом расчета по формуле.

Если наш результат больше, чем значение для уровня достоверности 0,05 (вероятность 5%), найденное в таблице, то можно отбросить нулевую гипотезу (Но) и принять альтернативную гипотезу (Нд), т.е. считать разницу средних достоверной.

Если же, напротив, полученный при вычислении результат меньше, чем табличный (для и - 2 степеней свободы), то нулевую гипотезу нельзя отбросить и, следовательно, разница средних недостоверна.

В нашем эксперименте с помощью метода Стьюдента для независи­мых выборок можно было бы, например, проверить, существует ли достоверная разница между фоновыми уровнями (значениями, получен­ными до воздействия независимой переменной) для двух групп. При этом мы получим:

,= У5^-15'2^- °'60 =053

/0,62 - 0,66

/3,072 3,172

^ly

15

Сверившись с таблицей значений t, мы можем прийти к следующим выводам: полученное нами значение t = 0,53 меньше того, которое соответствует уровню достоверности 0,05 для 26 степеней свободы (г| = 28); следовательно, уровень вероятности для такого t будет выше 0,05 и нулевую гипотезу нельзя отбросить; таким образом, разница между двумя выборками недостоверна, т. е. они вполне могут принадле­жать к одной популяции.

Сокращенно этот вывод записывается следующим образом:

/ = 0,53; г) = 28; р > 0,05; недостоверно. Однако наиболее полезным г-тест окажется для нас при проверке

' Как уже говорилось, поскольку объем выборок в данном случае невелик, а результаты опытной группы после воздействия не соответствуют нормальному распределению, лучше использовать непараметрический метод, например U-тест Манна-Уитни.


299

Статистика и обработка данных


 


гипотезы о достоверности разницы средней между результатами опыт­ной и контрольной групп после воздействия'. Попробуйте сами найти для этих выборок значения и сделать соответствующие выводы:


Значение t...... чем табличное для 0,05 (..... степеней свободы).

Следовательно, ему соответствует порог вероятности...... чем 0,05.

В связи с этим нулевая гипотеза может (не может) быть отвергнута. Разница между выборками достоверная (недостоверна?):

(<, =, >?)0,05;.....

t =

.; Р.

.; П =





Поделиться с друзьями:


Дата добавления: 2018-10-14; Мы поможем в написании ваших работ!; просмотров: 366 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

966 - | 879 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.