Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Оценка центральной тенденции




Если распределения для контрольной группы и для фоновых значе­ний в опытной группе более или менее симметричны, то значения, получаемые в опытной группе после воздействия, группируются, как уже говорилось, больше в левой части кривой. Это говорит о том, что после употребления марихуаны выявляется тенденция к ухудшению показате­лей у большого числа испытуемых.

Для того чтобы выразить подобные тенденции количественно, ис­пользуют три вида показателей моду, медиану и среднюю.

1. Мода (Мо)-это самый простой из всех трех показателей. Она соответствует либо наиболее частому значению, либо среднему значе­нию класса с наибольшей частотой. Так, в нашем примере для экспери­ментальной группы мода для фона будет равна 15 (этот результат встречается четыре раза и находится в середине класса 14-15-16). а после воздействия - 9 (середина класса 8-9-10).

Мода используется редко и главным образом для того, чтобы дать общее представление о распределении В некоторых случаях у распреде­ления могут быть две моды; тогда говорят о бимодальном распределе­нии. Такая картина указывает на то, что в данном совокупности имеются две относительно самостоятельные группы (см., например, данные Триона, приведенные в документе 3.5).

Бимодальное распределение

2. Медиана (Me) соответствует центральному значению в последова­тельном ряду всех полученных значений. Так, для фона в эксперимен­тальной группе, где мы имеем ряд

10 11 12 13 14 14 15 15 15 15 17 17 19 20 21,

медиана соответствует 8-му значению, т.е. 15. Для результатов воздей­ствия в экспериментальной группе она равна 10.

В случае если число данных и, четное, медиана равна средней арифметической между значениями, находящимися в ряду на и/2-м и п/2 + 1-м местах. Так, для результатов воздействия для восьми юношей опытной группы медиана располагается между значениями. находящимися на 4-м (8/2 = 4) и 5-м местах в ряду. Если выписать весь

Статистика и обработка дачных            287

ряд для эгих данных, а именно

7 8 9 11 12 13 14 16,

то окажется, что медиана соответствует (11 + 12)/2 = 11,5 (видно.^что медиана не соответствует здесь ни одному из полученных значении).

3 Средняя арифметическая (М) (далее просто «средняя») - это наибо­лее часто используемый показатель центральной тенденции. Ее приме­няют, в частности, в расчетах, необходимых для описания распределения и для его дальнейшего анализа. Ее вычисляют, разделив сумму всех значений данных на число этих данных. Так, для нашей опытной группы она составит 15,2(228/15) для фона и 11,3(169/15) для результатов

воздействия.

Если теперь отметить все эти три параметра на каждой из кривых для экспериментальной группы, то будет видно, что при нормальном расп­ределении они более или менее совпадают, а при асимметричном

распределении - нет.

Прежде чем идти дальше, полезно будет вычислить все эти показате­ли для обеих распределений контрольной группы-они пригодятся нам в дальнейшем:

9 10 11 12131415161718192021 222324 Фон

Mo=15 Me =15 М=15,2

После воздействия

Мо=9 Ме=10 М=11.3

288    Приложение Б

Оценка разброса

Как мы уже отмечали, характер распределения результатов после воздействия изучаемого фактора в опытной группе дает существенную информацию о том, как испытуемые выполняли задание. Сказанное относится и к обоим распределениям в контрольной группе:

Контрольная группа Мода (Мо) Медиана (Me) Средняя М\)

Ф°":         ....................................

После воздействия:....................................

8 9 10 11 12 1314 1516 171819 2021 22232425 После воздействия

Сразу бросается в глаза, что если средняя в обоих случаях почти одинакова, то во втором распределении результаты больше разбросаны, чем в первом. В таких случаях говорят, что у второго распределения больше диапазон, или размах вариаций, т. е. разница между максималь­ным и минимальным значениями.

Так, если взять контрольную группу, то диапазон распределения для фона составит 22 — 10 = 12, а после воздействия 25 — 8 = 17. Это позво­ляет предположить, что повторное выполнение задачи на глазодвига-тельную координацию оказало на испытуемых из контрольной группы определенное влияние: у одних показатели улучшились, у других ухуд­шились1. Однако для количественной оценки разброса результатов

' Здесь мог проявиться зффект п.шцебо, связанный с тем. что запах дыма травы вызвал у испытуемых уверенность в том, что они находятся под воз­действием наркотика. Для проверки этого предположения следовало бы повто­рить эксперимент со второй контрольной группой, в которой испытуемым будуг 1;|вать только обычную сигарету.

289

относительно средней в том или ином распределении существуют более точные методы, чем измерение диапазона.

Чаще всего для оценки разброса определяют отклонение каждого из полученных значений от средней (М-М), обозначаемое буквой d, а затем вычисляют среднюю арифметическую всех этих отклонений. Чем она больше, тем больше разброс данных и тем более разнородна выборка. Напротив, если эта средняя невелика, то данные больше сконцентриро­ваны относительно их среднего значения и выборка более однородна.

Итак, первый показатель, используемый для оценки разброса,-это среднее отклонение. Его вычисляют следующим образом (пример, кото­рый мы здесь приведем, не имеет ничего общего с нашим гипотетиче­ским экспериментом). Собрав все данные и расположив их в ряд

356911 14, находят среднюю арифметическую для выборки:

3+5+6+9+11+14 48

__————^———————=^=8.

Затем вычисляют отклонения каждого значения от средней и сумми­руют их:

-5  -3  -2  +1  +3   +6 (3 - 8) + (5 - 8) + (6 - 8) + (9 - 8) + (11 - 8) + (14 - 8).

Однако при таком сложении отрицательные и положительные отклоне­ния будут уничтожать друг друга, иногда даже полностью, так что результат (как в данном примере) может оказаться равным нулю. Из этого ясно, что нужно находить сумму абсолютных значений индиви­дуальных отклонений и уже эту сумму делить на их общее число. При этом получится следующий результат:

среднее отклонение равно 53213 |3-8|+|5-8[+|6-8|+|9-8|+|11 -8|+ 14^8! 20 ззз
6 б 33'3-

 

Общая формула:

 

2^| п

Среднее отклонение =

где Т. (сигма) означает сумму; | d\ - абсолютное значение каждого инди­видуального отклонения от средней; и-число данных.

Однако абсолютными значениями довольно трудно оперировать в алгебраических формулах, используемых в более сложном статистиче­ском анализе. Поэтому статистики решили пойти по «обходному пути», позволяющему отказаться от значений с отрицательным знаком, а имен­но возводить все значения в квадрат, а затем делить сумму квадратов на

290

Приложение Б

число данных. В нашем примере это выглядит следующим образом:

(_5)2 + (-З)2 + (-2)2 + (+1)2 + (+3)2 + (+6)2 _

6 _25+9+4+1+9+36_84_

6           - 6 ~ '

В результате такого расчета получают так называемую вариансу1 Формула для вычисления вариансы, таким образом, следующая:

Варианса -=•

Наконец, чтобы получить показатель, сопоставимый по величине со средним отклонением, статистики решили извлекать из вариансы квад­ратный корень. При этом получается так называемое стандартное отклонение:

Стандартное отклонение =

В нашем примере стандартное отклонение равно ^14 = 3,74.

Следует еще добавить, что для того, чтобы более точно оценить стандартное отклонение для малых выборок (с числом элементов менее 30), в знаменателе выражения под корнем надо использовать не п, an—I:

Вернемся теперь к нашему эксперименту и посмотрим, насколько полезен оказывается этот показатель для описания выборок.

На первом этапе, разумеется, необходимо вычислить стандартное

* Варианса представляет собой один из показателей разброса, используемых в гекоторых статистических методиках (например, при вычислении критерия F, <.м. следующий раздел). Следует отметить, что в отечественной литературе вариансу часто называют дисперсией. -Прим. перед.

* Стандартное отклонение для популяции обозначается маленькой греческой буквой сигм! (ст), а для выборки - буквой s. Это касается и вариансы, т.е кзадрага стандартного отклонения, для популяции она обозначается ет2, а для выборки s2.

Статистика и обработка данных

отклонение для всех четырех распределений. Сделаем это сначала для фона опытной группы:





Поделиться с друзьями:


Дата добавления: 2018-10-14; Мы поможем в написании ваших работ!; просмотров: 280 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2372 - | 2272 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.