Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Обратное преобразование Фурье




 

Процесс получения обратного преобразования заключается в выделении интегралов, определяемых соотношениями (1.2-5). Напомним здесь эти соотношения:

                                (1.1-2)

при обратном преобразовании Фурье;

                              (1.2-5)

при обратном преобразовании Лапласа.

В этих соотношениях интегрирование выполняется по всей бесконечной длине мнимой оси в случае преобразования Фурье и по бесконечной линий, параллельной мнимой оси и смещенной так, что все особенности F(s) лежат слева от этой линии, в случае преобразования Лапласа. Вычисление этих интегралов можно упростить, если применить теорему Коши о вычетах. Задача состоит в том, чтобы представить интеграл вдоль всей бесконечной мнимой оси в виде разности между интегралом по замкнутому пути, включающему как мнимую ось, так и дугу полуокружности бесконечного радиуса, и интегралом по полуокружности бесконечного радиуса. Можно показать, что при определенных ограничениях, наложенных на F(s) и t, интеграл на бесконечной полуокружности исчезает и, следовательно, значение интеграла вдоль мнимой оси определяется непосредственно из теоремы о вычетах для замкнутого контура.

 

 

Рассмотрим сначала обратное преобразование Фурье. Заметим, что бесконечная полуокружность может быть взята либо в правой либо в левой полуплоскости. Особенности преобразования Фурье F(s) могут в общем случае лежать как в правой, так и в левой полуплоскости. Можно показать, что интеграл по контуру» охватывающему левую полуплоскость, определяет f(t) при t>0, а интеграл по контуру, охватывающему правую полуплоскость определяет f(t) соответственно при t<0. Оба контура показаны на рис. 1.5-1.

Теорема Коши о вычетах устанавливает: "Если С является границей односвязной области (область называют односвязной, если каждый простой замкнутый контур, лежащий целиком внутри области, охватывает только точки самой области и, следовательно, не охватывает граничных точек), внутри которой и на ее границе g(s) аналитична, исключая конечное число полюсов, то значение  равно произведению 2pj на сумму вычетов в полюсах g(s), лежащих внутри области С".

Остается только вычислить вычеты в каждом из полюсов функции F(s)est, лежащих внутри замкнутого контура. Различным метолам вычисления вычетов в полюсах предпочитается, ввиду его простоты и совершенства, следующий. Вычет в полюсе s=s k порядка m функции g(s) равен

      (1.5-11)

Коротко говоря, обратное преобразование Фурье, определяемое соотношением

(1.1-2), может быть вычислено так:

при t<0,   (1.5-12)

где суммирование производится по вычетам s k во всех полюсах правой полуплоскости.

Подобным же образом значение f{t) при t>0 можно вычислить, рассматривая контур, полностью охватывающий левую полуплоскость (рис. 1.5-1). Обратное преобразование Фурье при этом дается формулой

при t>0, (1.5-13)

где суммирование производится по вычетам sj во всех полюсах левой полуплоскости.

Пусть, например, требуется определить обратное преобразование Фурье для функции

                          (1.5-14)

Чтобы определить f{t) при t<0, исследуем полюсы f(t), лежащие в правой полуплоскости. Полюс второго порядка в точке s=a является единственным полюсом в ППП. Воспользовавшись соотношением (1.5-12) при m=2 и s k =a, имеем

при t<0.

 

Следовательно,

 при t<0.             (1.5-15)

Чтобы вычислить f(t) при t>0, примем в расчет полюс первого порядка в ЛПП в точке s=—b и воспользуемся соотношением (1.5-13) при m=1.

 

Отсюда непосредственно следует

при t>0.     (1.5-16)

График функции f(t), заданной соотношениями (1.5-15), (1.5-16), показан на рис. 1.5-2. Этим завершается обсуждение преобразования Фурье и его обращения.

 

 





Поделиться с друзьями:


Дата добавления: 2018-10-14; Мы поможем в написании ваших работ!; просмотров: 279 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

2318 - | 2085 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.