Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Применение их соединений в медицине.




Азот по содержанию в организме человека (3,1 %) относится к макроэлементам. Если учитывать только массу сухого вещества организмов (без воды), то в клетках содержание азота составляет 8—10%. Этот элемент — составная часть аминокислот, белков, витаминов, гормонов. Азот образует полярные связи с атомами водорода и углерода в биомолекулах. Во многих бионеорганических комплексах — металлоферментах атомы азота по донорно-акцепторному механизму связывают неорганическую и органическую части молекулы.

Вместе с кислородом и углеродом азот образует жизненно важные соединения — аминокислоты, содержащие одновременно аминогруппу —NH2 с основными свойствами и карбоксильную группу (—СООН) с кислотными свойствами. Аминогруппа выполняет очень важную функцию и в молекулах нуклеиновых кислот. Огромно физиологическое значение азотсодержащих биолигандов — порфиринов, например гемоглобина.

Почти все животные должны получать хотя бы часть необходимого им азота в виде аминокислот, так как их организмы не способны синтезировать все аминокислоты из более простых предшественников. Растения могут использовать в качестве источника азота растворимые нитраты. Только немногие организмы способны усваивать элементный газообразный азот.

В биосфере происходит круговорот азота (рис. 8.5). Азотный цикл имеет жизненно важное значение для сельского хозяйства.

Необходимо отметить еще одно важное в биологическом плане свойство азота — его растворимость в воде почти такая же, как у кислорода. Присутствие избытка азота в крови может быть причиной развития кессонной болезни. При быстром подъеме водолазов происходит резкое падение давления — соответственно падает растворимость азота в крови (закон Генри) и пузырьки элементного азота, выходящие из крови, закупоривают мелкие сосуды, что может привести к параличу и смерти.

Фосфор. По содержанию в организме человека (0,95 %) фосфор относится к макроэлементам. Фосфор — элемент органоген и играет исключительно важную роль в обмене веществ. В форме фосфата фосфор представляет собой необходимый компонент внутриклеточной АТФ. Он входит в состав белков (0,5—0,6%), нуклеиновых кислот, нуклеотидов и других биологически активных соединений. Фосфор является основой скелета животных и человека (кальций ортофосфат, гидроксилапатит), зубов (гидроксилапатит, фторапатит).

Многие реакции биосинтеза осуществляются благодаря переносу фосфатных групп от высокоэнергетического акцептора к низкоэнергетическому. Фосфатная буферная система является одной из основных буферных систем крови. Живые организмы не могут обходиться без фосфора. Значение фосфора состоит и в том, что сахара и жирные кислоты не могут быть использованы клетками в качестве источников энергии без предварительного фосфорилирования.

Обмен фосфора в организме тесно связан с обменом кальция. Это подтверждается уменьшением количества неорганического фосфора при увеличении содержания кальция в крови (анта­гонизм).

Суточная потребность человека в фосфоре составляет 1,3г. Фосфор настолько распространен в пищевых продуктах, что случаи его явной недостаточности (фосфатный голод) практически неизвестны. Однако далеко не весь фосфор, содержащийся в пищевых продуктах, может всасываться, поскольку его всасывание зависит от многих факторов: рН, соотношения между содержанием кальция и фосфора в пище, наличия в пище жирных кислот, но в первую очередь, от содержания витамина D.

Целый ряд соединений фосфора используют в качестве лекарственных препаратов.

Следует отметить, что фосфорорганические соединения, содержащие связь С—Р, являются сильными нервно-паралитическими ядами, входят в состав боевых отравляющих веществ.

Мышьяк. По содержанию в организме человека (10-6%) мышьяк относится к микроэлементам. Он концентрируется в печени, почках, селезенке, легких, костях, волосах. Больше всего мышьяк содержится в мозговой ткани и в мышцах. Мышьяк накапливается в костях и волосах и в течение нескольких лет не выводится из них полностью. Эта особенность используется в судебной экспертизе для выяснения вопроса, имело ли место отравление соединениями мышьяка.

Определение мышьяка в биологическом материале проводят в несложном приборе по реакции Марша (рис. 8.6): к биообъекту добавляют цинк и соляную кислоту. Выделяющийся при реакции водород восстанавливает любое соединение мышьяка до арсина АsН3, например

Аs2О3 + 6Zn + 12НСl = 2АsН3 + 6ZnСl2 + 3Н2О

Если выделяющийся водород содержит примесь арсина, то при нагревании газовой смеси происходит разложение АsН3:

2АsН3 = 2Аs° + 3Н2

и на стенках трубки для газовыделения образуется черный блестящий налет мышьяка — «мышьяковое зеркало». Реакция Марша весьма чувствительна и позволяет обнаружить 7-10-7 г мышьяка.

В относительно- больших дозах соединения мышьяка очень ядовиты. Как уже упоминалось, токсическое действие соединений мышьяка обусловлено блокированием сульфгидрильных групп ферментов и других биологически активных веществ.

Сурьма и висмут. По содержанию в организме человека (10-6%) сурьма и висмут относятся к микроэлементам. По классификации В. В. Ковальского сурьму и висмут относят к той группе микроэлементов, которые постоянно находятся в живых организмах, но физиологическая и биохимическая роль которых практически не выяснена.

Физиологическая роль сурьмы, очевидно, подобна мышьяку. Ионы мышьяка Аs3+ и сурьмы Sb3+ и в меньшей степени Вi3+ являются синергистами. Так, известно, что в биогеохимических провинциях с избытком мышьяка в организмах увеличивается содержание не только мышьяка, но и сурьмы. При этом оба элемента накапливаются в щитовидной железе жителей, угнетают ее функцию и вызывают эндемический зоб. Синергизм мышьяка и сурьмы связан с их способностью к образованию соединений с серосодержащими лигандами. Висмут же более склонен связываться с лигандами, содержащими аминогруппы. Так, попадание растворимых соединений висмута в организм приводит к угнетению ферментов амино- и карбоксиполипептидазы.

Поступление внутрь организма водорастворимых соединений сурьмы, например стибина SbН3, оказывает токсический эффект, подобно соединениям мышьяка. Токсичны и соединения висмута при инъекции. Например, для собак смертельная доза составляет 6мг/кг массы. Однако при попадании большинства соединений сурьмы и висмута в пищеварительный тракт они практически не оказывают ядовитого действия. Слабая токсичность этих соединений обусловлена тем, что соли Sb (III), Вi (III) в пищеварительном тракте подвергаются гидролизу с образованием малорастворимых продуктов, которые не всасываются через стенки желудочно-кишечного тракта.

На этом основано применение лекарственных препаратов сурьмы и висмута, например основного нитрата висмута (смесь ВiOОН, Вi(ОН)23 и ВiONO3).

Среди р-элементов VА-группы азот и фосфор являются элементами, незаменимыми для всех живых организмов. Возможно, незаменимым микроэлементом является и мышьяк, в то время как для сурьмы и висмута необходимость их живым организмам пока не установлена. Являясь синергистами, мышьяк, сурьма и висмут блокируют сульфгидрильные группы биолигандов, и в относительно больших дозах весьма токсичны. В то же время положительная биологическая роль микроколичеств мышьяка дает основание полагать, что сурьма и висмут, возможно, тоже могут быть в той или иной мере полезны живым организмам.

 





Поделиться с друзьями:


Дата добавления: 2018-10-14; Мы поможем в написании ваших работ!; просмотров: 350 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2903 - | 2670 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.