Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Общая характеристика р -эл ементов III А - группы.




В IIIА-группу периодической системы элементов Д.И. Менделеева входят бор, алюминий, галлий, индий и таллий.

Общая электронная формула валентной оболочки атомов элементов IIIА-группы, где п — номер периода, к которому относится элемент Э.

Атомы этих элементов имеют по три валентных электрона на s- и р-орбиталях внешнего энергетического уровня. В невозбужденном состоянии неспарен только р-электрон. Соответственно в соединениях эти элементы могут проявлять степень окисления +1. Однако, за исключением таллия, для элементов IIIА-группы более характерна степень окисления +3. Это обусловлено тем, что переход электронов с s- на р-подуровень требует не очень большой затраты энергии (возбужденное состояние). Затраты полностью компенсируются при образовании дополнительных химических связей. Так, у бора переход электрона с 2s- на 2р-подуровень требует затраты энергии ΔЕ ~530 кДж/моль.

Для таллия степень окисления +3 менее характерна. С увеличением радиуса атома участие s2-электронов в образовании связей уменьшается. Особенно инертна электронная пара 6s2 (Тl — 6s21), поэтому таллий в соединениях обычно проявляет степень окисления +1.

В организме элементы IIIА-группы находятся в степени окисления + 3.

Металлические свойства p-элементов IIIА-группы выражены значительно слабее, чем у соответствующих элементов IIА-и особенно IА-группы. У бора преобладают неметаллические свойства. Так, вода не действует на элементный бор.

В целом с ростом порядкового номера металлические свойства элементов IIIА-группы усиливаются. Однако различие в структуре предвнешних оболочек обусловливает немонотонное изменение металлических свойств элементов в этой группе. От бора к алюминию радиус атома значительно возрастает, и металлические свойства резко увеличиваются.

На свойствах Gа, In, Тl сказывается заполнение d-орбиталей. Так, от Аl к Gа радиус атома (d-сжатие) уменьшается, а энергия ионизации увеличивается. При переходе от In к Тl происходит лишь незначительное увеличение радиуса атома (лантаноидное сжатие) и даже некоторое возрастание энергии ионизации. В результате таллий по своим свойствам резко отличается от свойств других элементов группы.

В отличие от бора элементные алюминий, галлий, индий и таллий представляют собой серебристо-белые мягкие металлы. Они легко растворяются в кислотах, а Аl, Gа и In — в щелочах. Их оксиды Э2О3 и гидроксиды Э(ОН)3 амфотерны, за исключением таллия гидроксида Тl(ОН)3, обладающего только основными свойствами.

Наличие свободных d-орбиталей во внешней электронной оболочке у атомов Аl, Gа, In, Тl сказывается на способности этих элементов проявлять более высокие координационные числа по сравнению с бором. Для бора характерно координационное число 4 (sр3-гибридизация; образуется, например, анион [В(ОН)4]-). Для Аl, Gа, In, Тl кроме координационного числа 4 типично координационное число 6 (sр3d2-гибридизация; образуется, например, анион [Аl(ОН)6]3-).

Из соединений элементов IIIА-группы наибольший интерес в биологии и медицине представляют как обычные, так и комплексные кислородные соединения бора и алюминия.

Химические свойства кислородных соединений бора. Оксид бора В2О3 имеет кислотный характер. В2О3 растворяется в воде с образованием ортоборной кислоты:

В2О3 + 3Н2О = 2Н3ВО3

Ортоборная кислота Н3ВО3 — белое кристаллическое вещество, относится к очень слабым кислотам.

В отличие от других кислот, ее протолитические свойства связаны не с отщеплением протонов, а с присоединением ионов ОН-:

Н3ВО3 + Н2О ⇄ [В(ОН)4]- + Н+

Ортоборная кислота при нагревании легко теряет воду и превращается в метаборную кислоту НВО2, затем в тетраборную кислоту Н2В4О7 и, наконец, в оксид В2О3.

При нейтрализации Н3ВО3 щелочью образуются комплексные анионы, например:

Н3ВО3 + ОН- ⇄ [В(ОН)4]-

При избытке щелочи получаются полибораты, выделяющиеся из растворов в виде кристаллогидратов, например:

3ВО3 + 2NаОН + 3Н2О = Nа2В4О7∙10Н2О

Ортобораты даже щелочных металлов не образуются, так как кислота Н3ВО3 очень слабая и ее соли подвергаются гидролизу.

Ортоборную кислоту применяют в качестве антисептического средства. Высокая растворимость борной кислоты в липидах обеспечивает быстрое проникновение ее в клетки через липидные мембраны. В результате происходит свертывание белков (денатурация) цитоплазмы микроорганизмов и их гибель.

Как антисептик широко применяют и буру — кристаллогидрат натрия тетрабората Nа2В4О7∙10Н2О. Фармакологическое действие препарата обусловлено гидролизом соли с выделением борной кислоты:

2В4О7 + 7Н2О = 4Н3ВО3 + 2NаОН

Образующиеся щелочь и кислота вызывают свертывание белков микробных клеток.

В зубопротезировании борную кислоту Н3ВО3 используют в качестве наполнителя формы при отливке стальных зубов.

В состав стоматологических паст, применяемых как клей-прослойка для зубных протезов, входит натрий метаборат NаВО2 в смеси с алюминием гидроксидом Аl(ОН)3.

В водном растворе с многоатомными спиртами и полифенолами борная кислота реагирует по схеме (биологически важная реакция):

Химические свойства кислородных соединении алюминия. Алюминий, в отличие от бора, является типичным амфотерным элементом. Металлические свойства выражены у алюминия гораздо сильнее, чем у бора. В большинстве соединений атомы алюминия находятся в состоянии sp3d2-гибридизации. Поэтому для алюминия наиболее характерно координационное число 6. Реже в соединениях атом алюминия находится в состоянии sp3-гибридизации (координационное число 4).

Элементный алюминий — активный металл белого цвета. Имеет большое сродство к кислороду, поэтому на воздухе металл быстро покрывается защитной оксидной пленкой. Несмотря на отрицательное значение окислительно-восстановительного потенциала, алюминий, вследствие покрытия его поверхности прочной оксидной пленкой, не вытесняет водород из воды. После удаления защитной пленки алюминий энергично взаимодействует с водой, вытесняя из нее водород:

2Аl(т) + 6Н2О(ж) = 2Аl(ОН)3(т) + 3Н2(г)

Являясь амфотерным, алюминий растворяется в кислотах — соляной, разбавленной серной,, а также в щелочах, образуя соответствующие катионные и анионные комплексы:

2Аl + 6НСl + 12Н2О = 2[Аl(Н2O)6]Сl3 + 3Н2

2Аl + 6NаОН + 6Н2О = 2Nа3[Аl(ОН)6] + 3Н2

В водном растворе, даже очень кислом, свободные ионы Аl3+ не существуют из-за гидратации.

Оксид алюминия — составная часть зубоврачебных цементов — «цемента для фиксации несъемных протезов», силикатного цемента «силиции», применяемого для пломбирования зубов, фиксации одиночных коронок, мостов. При употреблении напитков (например, «фанта») и пищи с повышенной кислотностью такие цементы довольно быстро разрушаются.

Алюминий гидроксид легко образуется при действии щелочей на растворы солей алюминия:

Аl3+(р) + 3ОН-(р) = Аl(ОН)3(т)

Алюминий гидроксид растворяется как в кислотах, так и в щелочах, т.е. является типичным амфотерным соединением.

В щелочных растворах наряду с гексагидроксоалюминат-ионами присутствуют и другие ионы, например [Аl(ОН)5]2-, [Аl(ОН)4]-.

Соли алюминия и кислородсодержащих кислот растворимы в воде. Исключение составляет алюминий фосфат АlРО4. Образование малорастворимого фосфата играет важную роль в жизнедеятельности организмов. Усвоение фосфора организмом уменьшается в присутствии катионов Аl3+ вследствие образования в кишечнике малорастворимого алюминий фосфата. Это обстоятельство необходимо учитывать при назначении препаратов алюминия, например средства против повышенной кислотности желудка Аl(ОН)3.

В желудке алюминий гидроксид образует гель, который нейтрализует оксоний-ионы желудочного сока:

Аl(ОН)3 + 3Н3О+ = Аl3+ + 6Н2О

Перешедшие в раствор ионы алюминия в кишечнике переходят в малорастворимую форму — алюминий фосфат:

Аl3+(р) +РО43-(р) = АlРO4(т)

Вследствие сильного гидролиза многие соли алюминия не удается выделить из водных растворов (например, сульфид, карбонат, цианид и др.):

Аl2S3 + 6Н2О = 2Аl(ОН)3 + 3Н2S

Из кристаллогидратов солей алюминия в медицинской практике находят применение калий-алюминий сульфат (квасцы алюмокалиевые) КАl(SО4)2∙12Н2О и жженые квасцы КАl(SО4)2, которые получают нагреванием алюмокалиевых квасцов при температуре не выше 433 К. Эти препараты обладают вяжущим действием.

Фармакологическое действие солей алюминия основано на том, что ионы Аl3+ образуют с белками (протеинами Рr) комплексы, выпадающие в виде гелей:

Аl3+ + Рr → АlРr

Это приводит к гибели микробных клеток и снижает воспалительную реакцию.

Квасцы применяют для полосканий, промываний и примочек при воспалительных заболеваниях слизистых оболочек и кожи. Кроме того, этот препарат применяют как кровоостанавливающее средство при порезах (свертывающее действие).

Жженые квасцы используют в виде присыпок как вяжущее и высушивающее средство при потливости ног. Осушающее действие связано с тем, что жженые квасцы медленно поглощают воду:

КА1(5О4)2 + хН2О= КА1(5О4)2-*Н2О

Вяжущим действием обладает и жидкость Бурова — 8%-ный раствор алюминия ацетата Аl(СН3СОО)3.

В живых организмах с биолигандами (оксикислотами, полифенолами, углеводами, липидами) алюминий образует хелатные комплексные соединения. Как правило, связи с органическими лигандами он образует через атомы кислорода. Например, при взаимодействии Аl3+ с полифенолами получаются комплексные соединения следующего состава:

В стоматологической практике находят широкое применение соединения алюминия, например белая глина (каолин) Аl2О3∙SiO2∙2Н2О. Каолин входит в состав цементов, которые используют как временный пломбировочный материал, а также для штамповки коронок.

Химические свойства кислородных соединений галлия, индия, таллия. Аналогично алюминию для Gа, In и Тl наиболее характерно координационное число 6. Как и для алюминия, при растворении гидроксидов и оксидов этих элементов в кислотах образуются аквакомплексы состава [Э(Н2О)6]3+, а при растворении в щелочах — гидроксокомплексы состава М[Э(ОН)4] или М3[Э(ОН)6]. Оксиды и гидроксиды Gа (III), In (III) и Тl (III) являются амфотерными соединениями.

Таллий в соединениях проявляет степень окисления +1. Ион Тl+ имеет радиус и строение валентной оболочки, близкие ионам К+, Аg+. Вследствие этого химические и токсические свойства соединений Тl (I) похожи на свойства соединений серебра.

Таллий оксид и гидроксид обладают ярко выраженными основными свойствами. Соли таллия (I) либо не гидролизуются, либо при гидролизе образуют щелочную среду. Соединения галлия, индия и, в особенности, таллия ядовиты.

 





Поделиться с друзьями:


Дата добавления: 2018-10-14; Мы поможем в написании ваших работ!; просмотров: 470 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

2408 - | 2118 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.