Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Системы инженерного анализа




При проектировании тепловых устройств необходим инженерный анализ гидрогазодинамических процессов и тепломассопереноса. Для этих целей в России часто применяют коммерческие пакеты: ANSYS Multiphysics, ANSYS CFX, ANSYS Fluent, STAR-CD/STAR-CCM+, FlowVision и Gas Dynamics
Tool[3].

  Рис. 1.4. Модель двигателя мотоцикла в SolidWorks

По уровню полноты моделирования физических процессов и проработанности математических моделей в этой группе пакетов ANSYS и STAR-CD относят к так называемым пакетам тяжелого класса. Это коммерческие профессиональные CFD-комплексы для решения широкого спектра задач механики сплошных сред и тепломассобмена. Моделирование процессов, протекающих в жидких и газообразных средах, в пакетах осуществляется на основе численного решения полных трехмерных нестационарных уравнений Навье – Стокса. Пакеты обеспечивают возможность анализа течений вязкой ньютоновской и неньютоновской жидкости и газа в широком диапазоне скоростей от ползучих до гиперзвуковых течений при ламинарном и турбулентном режимах. Для замыкания осредненных по Рейнольдсу уравнений Навье – Стокса при моделировании турбулентных течений используется значительное число полуэмпирических моделей турбулентности. Разностные схемы в пакетах реализованы на основе метода конечного объема.

При анализе высокотемпературных процессов в агрегатах существенна способность данных пакетов описывать радиационный теплоперенос с использованием нескольких методов решения уравнения переноса: метода Росселанда, метода π1, метода Discrete Transfer или метода Монте-Карло. Возможности пакетов расширяет пользовательское программирование. Для учета сопутствующих физических и химических процессов в пакеты включены модели многокомпонентных течений; химических реакций с учетом химической кинетики, в том числе и реакций горения; многофазных течений и др.

К пакетам среднего класса можно отнести FlowVision, пакеты симуляции процессов в САПР SolisWorks и Inventor. Эти пакеты менее универсальны, чем пакеты первой группы, с меньшей полнотой описывают теплофизические процессы и совершенно неудовлетворительно моделируют перенос тепловой радиации.

Flow Vision разрабатывается и поддерживается российской компанией «ТЕСИС» (г. Москва). Он позволяет анализировать процессы теплопереноса и диффузии в твердом теле, может быть использован при решении задач сопряженного теплообмена между твердым телом и жидкостью. В пакет встроены модель течения с поверхностью раздела сред и модели горения, а также модель течения в пористых средах и модель многофазных сред. Вероятно, благодаря значительному числу используемых моделей, пакет может использоваться при решении широкого круга задач.

 Другой отечественный пакет, Gas Dynamics Tool (GDT), разрабатываемый и поддерживаемый компанией GDT Software Group (г. Тула) может использоваться для численного моделирования нестационарных ударно-волновых газодинамических процессов, включая горение и детонацию.

Значительными функциональными возможностями обладает пакет OpenFOAM (Open Field Operation and Manipulation), который содержит свободно распространяемый инструментарий вычислительной гидродинамики для операций со скалярными и векторными полями. Код OpenFOAM разработан в Великобритании в компании OpenCFD Limited и используется многими промышленными предприятиями. Программа позволяет решать многие задачи: прочностные; моделировать гидродинамику ньютоновских и неньютоновских вязких жидкостей как в несжимаемом, так и в сжимаемом приближении с учетом конвективного теплообмена и действием сил гравитации; моделировать турбулентные течения, дозвуковые, околозвуковые и сверхзвуковые задачи; задачи теплопроводности в твердом теле; многофазные задачи, в том числе с описанием химических реакций компонент потока; сопряженные задачи и др.

В настоящее время объем применения CAE-технологий проектирования сдерживается недостаточной квалификацией инженеров. Специалисты не имеют опыта тестирования решаемых задач, слабо разбираются в деталях используемых расчетных методик и физических моделей, воспринимают решения задач как «процесс нажимания кнопок» и выбора опций программы. Поэтому производственники часто обоснованно сомневаются в достоверности получаемых результатов моделирования. Из сказанного следует важность задач, стоящих перед учреждениями высшего образования.

Тем не менее число проектов, обязанных своим успехом применению CAE, постоянно растет. Уже сейчас около 25 % инвестиций в средства управления жизненным циклом изделия (Product Lifecycle Management, PLM) приходится на долю CAE-программ. И эта часть будет увеличиваться, т. к. по темпу годового роста сегмент инженерного анализа опережает рынок PLM в целом.


  Глава 2

АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ
В СИСТЕМЕ «КОМПАС-3 D»

2.1. Интерфейс программы «КОМПАС-График»

 

Многие элементы управления программы «КОМПАС-3D» характерны для приложений операционной системы Windows, поэтому их часто называют «интуитивно понятными». На рис. 2.1 показано главное окно системы[2]. Описание программы выполняется по [4, 5, 6, 7] и другим материалам фирмы АСКОН, представленным в открытом доступе Интернете.

 

  Рис. 2.1. Главное окно системы «КОМПАС-График»*




Поделиться с друзьями:


Дата добавления: 2018-10-15; Мы поможем в написании ваших работ!; просмотров: 308 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2331 - | 2123 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.