Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


II. Изучение нового материала.

1. Ввести понятие внешнего угла треугольника.

2. Доказать теорему о внешнем угле треугольника (рис. 125 учебника).

3. Устно решить задачу: в треугольнике АВС В = 110°. Чему равны: а) сумма остальных внутренних углов треугольника? б) внешний угол при вершине В?

4. По готовому чертежу на доске устно решить задачу:

Найдите внутренние и внешний угол СDF треугольника KСD.

III. Решение задач.

1. Решить задачу № 232 под руководством учителя на доске и в тетрадях.

Дано: CВE – внешний угол треугольника АВС; CВE = 2 А. Доказать: АВС – равнобедренный. Решение Проведем биссектрисы BF и ВD смежных углов СВЕ и АВС, тогда ВF ВD (см. задачу № 83).

ВF || АС, так как 1= 2 = 3, а углы 1 и 3 соответственные при пересечении прямых ВF и АС секущей АВ. ВD  АС,  так как ВD ВF, а ВF || АС. В треугольнике АВС биссектриса ВD является высотой, следовательно, треугольник АВС – равнобедренный (см. задачу № 133).

2. Обратное утверждение также верно, а именно: если треугольник равнобедренный, то внешний угол при вершине, противолежащей основанию треугольника, в два раза больше угла при основании.

Действительно, этот внешний угол равен сумме двух углов при основании равнобедренного треугольника, а так как углы при основании равны, то данный внешний угол в два раза больше угла при основании треугольника.

3. Решить задачу № 234 на доске и в тетрадях (рассмотреть два случая).

IV. Самостоятельная работа обучающего характера (15–20 мин).

Вариант I

1. Один из углов равнобедренного треугольника равен 96°. Найдите два других угла треугольника.

2. В треугольнике СDЕ с углом Е = 32° проведена биссектриса CF, СFD = 72°. Найдите D.

Вариант II

1. Один из углов равнобедренного треугольника равен 108°. Найдите два других угла треугольника.

2. В треугольнике СDЕ проведена биссектриса CF, D = 68°, Е =
= 32°. Найдите СFD.

V. Итоги урока.

Домашнее задание: изучить пункты 30–31; ответить на вопросы 1–5 на с. 89; решить задачи №№ 233, 235.


 Рис. 1                 Рис. 2                     Рис. 3                         Рис. 4

Рис. 5              Рис. 6                     Рис. 7                             Рис. 8

 

 Рис. 1                 Рис. 2                     Рис. 3                         Рис. 4

Рис. 5              Рис. 6                     Рис. 7                             Рис. 8

 

 Рис. 1                 Рис. 2                     Рис. 3                         Рис. 4

Рис. 5              Рис. 6                     Рис. 7                             Рис. 8

 Рис. 1                 Рис. 2                     Рис. 3                         Рис. 4

Рис. 5              Рис. 6                     Рис. 7                             Рис. 8


Вариант I

1. Один из углов равнобедренного треугольника равен 96°. Найдите два других угла треугольника.

2. В треугольнике СDЕ с углом Е = 32° проведена биссектриса CF, СFD = 72°. Найдите D.

 

Вариант II

1. Один из углов равнобедренного треугольника равен 108°. Найдите два других угла треугольника.

2. В треугольнике СDЕ проведена биссектриса CF, D = 68°, Е =
= 32°. Найдите СFD.

Вариант I

1. Один из углов равнобедренного треугольника равен 96°. Найдите два других угла треугольника.

2. В треугольнике СDЕ с углом Е = 32° проведена биссектриса CF, СFD = 72°. Найдите D.

 

Вариант II

1. Один из углов равнобедренного треугольника равен 108°. Найдите два других угла треугольника.

2. В треугольнике СDЕ проведена биссектриса CF, D = 68°, Е =
= 32°. Найдите СFD.

Вариант I

1. Один из углов равнобедренного треугольника равен 96°. Найдите два других угла треугольника.

2. В треугольнике СDЕ с углом Е = 32° проведена биссектриса CF, СFD = 72°. Найдите D.

 

Вариант II

1. Один из углов равнобедренного треугольника равен 108°. Найдите два других угла треугольника.

2. В треугольнике СDЕ проведена биссектриса CF, D = 68°, Е =
= 32°. Найдите СFD.

Вариант I

1. Один из углов равнобедренного треугольника равен 96°. Найдите два других угла треугольника.

2. В треугольнике СDЕ с углом Е = 32° проведена биссектриса CF, СFD = 72°. Найдите D.

 

Вариант II

1. Один из углов равнобедренного треугольника равен 108°. Найдите два других угла треугольника.

2. В треугольнике СDЕ проведена биссектриса CF, D = 68°, Е =
= 32°. Найдите СFD.

Вариант I

1. Один из углов равнобедренного треугольника равен 96°. Найдите два других угла треугольника.

2. В треугольнике СDЕ с углом Е = 32° проведена биссектриса CF, СFD = 72°. Найдите D.

 

Вариант II

1. Один из углов равнобедренного треугольника равен 108°. Найдите два других угла треугольника.

2. В треугольнике СDЕ проведена биссектриса CF, D = 68°, Е =
= 32°. Найдите СFD.

Вариант I

1. Один из углов равнобедренного треугольника равен 96°. Найдите два других угла треугольника.

2. В треугольнике СDЕ с углом Е = 32° проведена биссектриса CF, СFD = 72°. Найдите D.

 

Вариант II

1. Один из углов равнобедренного треугольника равен 108°. Найдите два других угла треугольника.

2. В треугольнике СDЕ проведена биссектриса CF, D = 68°, Е =
= 32°. Найдите СFD.

Вариант III

1. В равнобедренном треугольнике MNP c основанием МР и углом N = 64° проведена высота МН. Найдите РМН.

2. В треугольнике СDЕ проведены биссектрисы CK и , пересекающиеся в точке F, причем DFK = 78°. Найдите СЕD.

Вариант IV

1. В равнобедренном треугольнике CDЕ c основанием СЕ и D = 102° проведена высота СН. Найдите DСН.

2. В треугольнике АВС проведены биссектрисы АМ и ВN, пересекающиеся в точке K, причем АKN = 58°. Найдите АСВ.

Урок 3 3
СООТНОШЕНИЯ
МЕЖДУ СТОРОНАМИ И УГЛАМИ ТРЕУГОЛЬНИКА

Цели: рассмотреть теоремы о соотношениях между сторонами и углами треугольника, следствия из этих теорем; научить применять эти знания при решении задач.

Ход урока



<== предыдущая лекция | следующая лекция ==>
II. Решение задач по готовым чертежам. | I. Анализ результатов самостоятельной работы.
Поделиться с друзьями:


Дата добавления: 2018-10-14; Мы поможем в написании ваших работ!; просмотров: 250 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2292 - | 2142 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.