Пример 2. Сферический конденсатор. Сферический конденсатор состоит из двух концентрических металлических обкладок 1 и 2 сферической формы, радиусы которых соответственно равны R 1 и R 2 > R 1. Пусть + q -заряд первой обкладки, а – q -заряд второй обкладки. Напряженность поля в конденсаторе направлена радиально: E = Er, причем
где e - относительная диэлектрическая проницаемость среды, заполняющей конденсатор. Так как
то разность потенциалов обкладок
Электрическая емкость сферического конденсатора
Пример 3. Цилиндрический конденсатор. Цилиндрический конденсатор состоит из двух тонкостенных металлических цилиндров высотой l и радиусами R 1 и R 2 > R 1, вставленных друг в друга. Пусть заряд внутренней обкладки радиусом R 1 + q, а внешней, радиусом R 2 – q. Если l >> (R 1 и R 2), то, пренебрегая искажениями поля вблизи краев конденсатора, можно приближенно считать, что поле конденсатора такое же, как поле двух цилиндров бесконечной длины, заряженных с линейными плотностями зарядов t = q / l и - t. Внутри конденсатора поле создается только внутренней обкладкой. Так как s = t /(2 p R 1)= q /(2 p R 1 l), следует что напряженность поля в диэлектрике с относительной диэлектрической проницаемостью e, заполняющем поле между обкладками конденсатора (R 1 £ r £ R 2), равна Er = q /(2 p ee 0 lr). (смотрите вывод в лабораторной работе № 1)
Так как
то разность потенциалов обкладок конденсатора
Электрическая емкость цилиндрического конденсатора
Эта формула выражает, в частности, емкость кабеля, который состоит из металлического провода, окруженного слоем изолятора и металлической броней.
Если напряжение на конденсаторе сделать слишком большим, то конденсатор «пробивается», т. е. между его обкладками возникает искра (внутри диэлектрика или по его поверхности) и конденсатор портится вследствие нарушения изоляции. Поэтому каждый конденсатор характеризуется не только своей емкостью, но еще и максимальным рабочим напряжением. Для того чтобы, располагая определенными конденсаторами, осуществить желаемую емкость при нужном рабочем напряжении, конденсаторы соединяют в батареи.
Рис 2.1
Соединение конденсаторов
На 2.1, а показано параллельное соединение конденсаторов. В этом случае общим для всех конденсаторов является напряжение U, и мы имеем
q 1 = C 1 U, q 2 = C 2 U,...
Суммарный заряд, находящийся на батарее, равен
Q = å qi = U å Ci,
и поэтому емкость батареи
C = q / U = å Ci. (2.2)
Емкость батареи конденсаторов, соединенных параллельно, равна сумме емкостей отдельных конденсаторов. Так как в этом случае напряжение на каждом конденсаторе равно напряжению на батарее, то и допустимое рабочее напряжение батареи будет таким же, как и у одного конденсатора.
На рис. 2.1, б изображено последовательное соединение конденсаторов. В этом случае одинаков для всех конденсаторов заряд q,равный полному заряду батареи, и мы можем написать
U 1 = q / C 1, U 2 = q / C 2.
Напряжение же батареи будет равно сумме напряжений на отдельных конденсаторах, т. е.
.
Поэтому для емкости С всей батареи, находим
. (2.3)
При последовательном соединение конденсаторов суммируются обратные значения емкостей. В этом случае напряжение на каждом конденсаторе будет меньше напряжения на батарее, и поэтому допустимое значение напряжения больше, чем у одного конденсатора.
На рис. 2.1, в показано смешанное соединение конденсаторов. Емкость такой батареи легко определить, пользуясь формулами (2.2) и (2.3).
При помощи гальванометра можно измерить не только силу тока, но и заряд, находящийся на каком-либо конденсаторе, что используется в данной работе. Рассмотрим, магнитоэлектрический гальванометр и будем считать, что трение при движении рамки настолько мало, что им можно пренебречь. Рамка является механической колебательной системой. Она имеет определенный момент инерции I и на нее действует сила упругости подвеса. Момент сил упругости подвеса Мп можно считать пропорциональным углу поворота рамки:
Mn = - f a,
где f зависит от устройств подвеса или спиральных пружин. Поэтому, будучи выведена из положения равновесия, рамка совершает механические крутильные колебания с периодом
.
Положим теперь, что мы замкнули на гальванометр какой-нибудь заряженный конденсатор. Конденсатор начнет разряжаться и в гальванометре возникнет кратковременный ток (импульс тока). Будем считать, что время импульса t мало по сравнению с периодом колебаний рамки: t<<T (баллистический режим). Тогда за время импульса рамка не успеет заметно сместиться, и все явления будет подобно явлению удара в механике. За время t на рамку подействует импульс момента силы, равный
,
где q -полный заряд, прошедший через гальванометр, μ - цена деления шкалы гальванометра в мкФ/дел. Поэтому рамка приобретает момент импульса
I w 0 = ,
(w0- угловая скорость рамки) и кинетическую энергию
.
После окончания импульса тока рамка начнет поворачиваться, и ее кинетическая энергия будет превращаться в потенциальную энергию закрученного подвеса:
Wn = f a 2 /2.
Поэтому, если a m есть максимальный отброс, то
.
Из этих уравнений находим
,
где b - постоянная прибора, называемая баллистическая постоянная. Мы видим, что, измеряя первый максимальный отброс гальванометра, можно определить полный заряд, прошедший через гальванометр.
Из зависимости q ~ a, исходя из определения емкости (2.1), следует, что
a ~ C. (2.4)
Выражение (2.4) можно записать в виде
C = a × μ.
Здесь С - емкость измеряемого конденсатора в мкФ, a - величина отброса стрелки гальванометра в делениях шкалы.
Построив график зависимости электроемкости от отброса стрелки гальванометра можно будет в дальнейшем, по известной электроемкости, сразу найти отброс стрелки гальванометра, и наоборот.
Описание установки
Набор конденсаторов (С) установлен внутри передней панели лабораторного стенда, с наружной стороны находится только переключатель с десятью положениями. Нумерация начинается с 0 и заканчивается 9. Каждому положению переключателя соответствует определенная емкость. 0 – отключено, 1 – С1(0,2 мкф), 2 – С2(0,5 мкф), 3 – С3(1 мкф), 4 – С4(1,5 мкф), 5 – С5(2,3 мкф), 6 – Сх1, 7 – Сх2, 8 – Схпосл, 9 – Схпар. При выполнении данной лабораторной работы у гальванометра используются клеммы 2 и 3. Емкости подобраны таким образом, что при любом положении переключателя стрелка гальванометра не будет зашкаливать.