Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Равномерное распределение (непрерывное)




Равномерный закон распределения используется при анализе ошибок округления при проведении числовых расчётов (например, ошибка округления числа до целого распределена равномерно на отрезке [-0,5; 0,5]), в ряде задач массового обслуживания, при статистическом моделировании наблюдений, подчинённых заданному распределению.

Плотность распределения:

Числовые характеристики: , ,

График плотности вероятностей:


25. Нормальное распределение или распределение Гаусса (непрерывное)

Нормальное распределение, также называемое распределением Гаусса, – распределение вероятностей, которое играет важнейшую роль во многих областях знаний, особенно в физике. Физическая величина подчиняется нормальному распределению, когда она подвержена влиянию огромного числа случайных помех. Ясно, что такая ситуация крайне распространена, поэтому можно сказать, что из всех распределений в природе чаще всего встречается именно нормальное распределение — отсюда и произошло одно из его названий.

Плотность распределения:

Числовые характеристики: , ,

Пример плотности распределения:

Нормальный закон распределения случайной величины с параметрами и называется стандартным или нормированным, а соответствующая нормальная кривая - стандартной или нормированной.

Функция Лапласа .

Вероятность попадания нормально распределенной случайной величины в заданный интервал

Вероятность отклонения нормально распределенной случайной величины на величину от математического ожидания (по модулю).

.

 

Неравенство Чебышева

Неравенство Маркова

Математическое ожидание функции одной случайной величины

29. Корреляционный момент системы случайных величин и

30. Коэффициент корреляции системы случайных величин и

Пуассоновский поток событий

 

События:

Достоверное событие, если вероятность появления его равна 1.

Недостоверное событие называется, если вероятность равна 0.

Несовместные события – события, при которых в данном опыте не могут появиться 2 из них.

Равновозможные события – события, при которых в данном опыте не одно из них не является объективно возможным.

Противоположные события – события, которые образуют полную группу из 2-х событий.

Независимые события – такие, при которых не зависимы каждое из 2-х событий.(Корреляция—не зависимость)

Совместные события – такие события, при которых появление 1 из них не исключает появление другого в одном и том же опыте.

 





Поделиться с друзьями:


Дата добавления: 2017-03-18; Мы поможем в написании ваших работ!; просмотров: 239 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Человек, которым вам суждено стать – это только тот человек, которым вы сами решите стать. © Ральф Уолдо Эмерсон
==> читать все изречения...

2277 - | 2132 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.