I. Случайные события. Основные формулы.
Основные формулы комбинаторики
а) перестановки .
б) размещения
в) сочетания .
Классическое определение вероятности.
, где - число благоприятствующих событию исходов, - число всех элементарных равновозможных исходов.
Вероятность суммы событий
Теорема сложения вероятностей несовместных событий:
Теорема сложения вероятностей совместных событий:
Вероятность произведения событий
Теорема умножения вероятностей независимых событий:
Теорема умножения вероятностей зависимых событий:
,
- условная вероятность события при условии, что произошло событие ,
- условная вероятность события при условии, что произошло событие .
Формула полной вероятности
, где - полная группа гипотез, то есть , - достоверное событие.
Формула Байеса (формула Бейеса). Вычисление апостериорных вероятностей гипотез
, где - полная группа гипотез.
Формула Бернулли
- вероятность появления события ровно раз при независимых испытаниях, - вероятность появления события при одном испытании.
Наивероятнейшее число наступления события.
Наивероятнейшее число появления события при независимых испытаниях:
, - вероятность появления события при одном испытании.
Локальная формула Лапласа
- вероятность появления события ровно раз при независимых испытаниях, - вероятность появления события при одном испытании, .
Интегральная формула Лапласа
- вероятность появления события не менее m1 и не более m2 раз при независимых испытаниях, - вероятность появления события при одном испытании, .
11. Оценка отклонения относительной частоты от постоянной вероятности :
.
II. Случайные величины.
Ряд распределения дискретной случайной величины
……. | ||||
……. |
Сумма вероятностей всегда равна 1.
Функция распределения (интегральная функция распределения)
Функция распределения случайной величины определяется по формуле . Это неубывающая функция, принимающая значения от 0 до 1. Если задана плотность распределения , то функция распределения выражается как .
14. Плотность распределения (дифференциальная функция распределения)
Плотность распределения случайной величины определяется по формуле . Существует только для непрерывной случайной величины. Для нее выполняется условие нормировки: (площадь под кривой равна 1).
Вероятность попадания случайной величины в заданный интервал
Может быть вычислена двумя способами:
1) через функцию распределения
2) через плотность распределения
Математическое ожидание случайной величины
1) Для дискретной случайной величины , заданной рядом распределения:
1) Для непрерывной случайной величины , заданной плотностью распределения:
.