По определению дисперсия – это второй центральный момент: .
1) Для дискретной случайной величины , заданной рядом распределения:
1) Для непрерывной случайной величины , заданной плотностью распределения:
18. Среднее квадратическое отклонение случайной величины
19. Начальный момент r–го порядка случайной величины
.
В частности, первый начальный момент – это математическое ожидание:
20. Центральный момент r – го порядка случайной величины
В частности, второй центральный момент – это дисперсия: .
Асимметрия
Коэффициент асимметрии положителен, если правый хвост распределения длиннее левого (правая часть кривой более пологая), и отрицателен в противном случае. Если распределение симметрично относительно математического ожидания, то его коэффициент асимметрии равен нулю.
Эксцесс
Коэффициент эксцесса нормального распределения равен нулю. Он положителен, если пик распределения около математического ожидания острый, и отрицателен, если пик гладкий.
Биномиальное распределение (дискретное)
- количество «успехов» в последовательности из независимых случайных экспериментов, таких что вероятность «успеха» в каждом из них равна . .
Закон распределения имеет вид:
….. | k | ….. | ||||
Здесь вероятности находятся по формуле Бернулли: .
Характеристики: , ,
Примеры многоугольников распределения для и различных вероятностей:
Пуассоновское распределение (дискретное)
Распределение Пуассона моделирует случайную величину, представляющую собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга.
При условии закон распределения Пуассона является предельным случаем биномиального закона. Так как при этом вероятность события A в каждом испытании мала, то закон распределения Пуассона называют часто законом редких явлений.
Ряд распределения:
….. | k | ….. | |||
….. | ….. |
Вероятности вычисляются по формуле Пуассона: .
Числовые характеристики: , ,
Разные многоугольники распределения при .
Показательное распределение (непрерывное)
Экспоненциальное или показательное распределение — абсолютно непрерывное распределение, моделирующее время между двумя последовательными свершениями одного и того же события.
Плотность распределения:
Где .
Числовые характеристики: , ,
Плотность распределения при различных значениях .