Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Дополнительные соотношения между элементами призмы




Если в наклонной призме боковое ребро образует одинаковые углы со сторонами основания, которые выходят из вершины , то основание О высоты лежит на биссектрисе угла (рис. 7).

Доказательство:

Проведем и отрезки Согласно теореме о трех перпендикулярах, имеем и . Прямоугольные треугольники и равны, поскольку имеют общую гипотенузу и одинаковые углы ( по условию). Следовательно, и , отсюда Таким образом, точка О равноудалена от сторон угла и, следовательно, лежит на биссектрисе угла . [3, 24]

Задачи

1. Ребро куба равно а.

Найдите:

Диагональ грани: d= a√2.

Диагональ куба: D= a√3.

Периметр основания: P= 4a.

 

2. Основанием прямой призмы является равнобедренный треугольник, в котором высота проведенная к основанию равняется 8см. Высота призмы равняется 12см. Найдите полною поверхность призмы если боковая грань что содержит основание треугольника - квадрат.

Быстрый поиск по Банку Рефератов: | Описание работы | Похожие работы

Решение

Площадь поверхности призмы будет равна сумме площадей оснований и сумме площадей боковых поверхностей, то есть , где - площадь основания призмы, - площадь боковой поверхности, содержащей основание, - площадь боковой поверхности, содержащей стороны равнобедренного треугольника. (Они равны, так как стороны основания равны в следствие того, что треугольник равнобедренный, а вторые стороны равны высоте призмы)

Поскольку боковая грань, содержащая основание треугольника, является квадратом, то основание треугольника также равно 12 см. (основание треугольника одновременно является стороной грани).

Таким образом, зная высоту и основание равнобедренного треугольника можно найти его остальные стороны и площадь:

Катеты, соответственно равны (у нас высота, являющаяся в равнобедренном треугольнике одновременно и медианой , с каждым из катетов образует прямоугольный треугольник) по теореме Пифагора:

Таким образом:

,

3. В правильной четырёхугольной призме площадь основания 144 , а высота 14 см. Найти диагональ призмы.

Решение

Правильный четырехугольник – это квадрат.

Соответственно, сторона основания будет равна

Откуда диагональ основания правильной прямоугольной призмы будет равна

Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:

Ответ: 22 см

4. Рассмотрим правильную четырехугольную призму , диагональное сечение которой – квадрат. Через вершину и середины ребер АВ и ВС проведена плоскость. Найти площадь полученного сечения, если

Решение

Быстрый поиск по Банку Рефератов: | Описание работы | Похожие работы

Построение сечения видно на рисунке, где К и L – середины сторон АВ и ВС основания призмы, Е и F – точки пересечения прямой КL соответственно с продолжениями сторон DA и DC. Сечением является пятиугольник площадь которого можно найти. Можносначала вычислить площади треугольников и а потом от площади первого треугольника вычесть удвоенную площадь второго (поскольку треугольники и равны). Однако в данном случае проще воспользоваться формулой:

Проекция пятиугольника на плоскость основания призмы есть пятиугольник , площадь которого найдем, вычитая из площади квадрата площадь треугольника ВКL:

Пусть диагональ ВD основания пересекает отрезок КL в точке О. Так как и (согласно теореме о трех перпендикулярах), то – линейный угол двугранного угла КL.

Далее находим:

Из прямоугольного треугольника по теореме Пифагора имеем:

Значит, и

5. Дана правильная призма: , . Найти высоту призмы.

Решение

Площадь основания

АВ= 2 см.

Периметр основания Р = 8 см.

Высота призмы

6. Основанием параллелепипеда служит квадрат. Одна из вершин верхнего основания равноудалена от всех вершин нижнего основания и находится на расстоянии b от этого основания. Сторона основания равна a. Найдите полную поверхность параллелепипеда.

Решение

Быстрый поиск по Банку Рефератов: | Описание работы | Похожие работы

Пусть – данный параллелепипед с основаниями , и боковыми рёбрами , причём ABCD – квадрат со стороной a, вершина равноудалена от вершин A, B, C и D, а расстояние от вершины до плоскости основания ABCD равно b. Поскольку точка равноудалена от вершин квадрата ABCD, она лежит на перпендикуляре к плоскости ABCD, проходящем через центр O квадрата. Перпендикуляр, опущенный из точки O на сторону BC, проходит через её середину M. По теореме о трёх перпендикулярах , поэтому – высота грани . Из прямоугольного треугольника находим, что

.

Значит,

Аналогично,


Если S – полная поверхность параллелепипеда , то

.

7. Докажите, что если сечение параллелепипеда плоскостью является многоугольником с числом сторон, большим трёх, то у этого многоугольника есть параллельные стороны.

Доказательство

У параллелепипеда 3 пары параллельных граней. Если плоскость пересекает более трёх граней, то по крайней мере две стороны многоугольника сечения лежат в противоположных гранях параллелепипеда. По теореме о пересечении двух параллельных плоскостей третьей эти две стороны параллельны.

8. В параллелепипеде грань ABCD – квадрат со стороной 5, ребро также равно 5, и это ребро образует с рёбрами AB и AD углы . Найдите диагональ .

Решение

Треугольник – равносторонний, т.к. = AB и . Поэтому . Аналогично, . Боковые рёбра треугольной пирамиды с вершиной равны между собой, значит, высота этой пирамиды проходит через центр окружности, описанной около основания ABD, а т.к. треугольник ABD прямоугольный, то точка O – середина его гипотенузы BD, т.е. центр квадрата ABCD. Из прямоугольного треугольника находим, что


Поскольку , точка равноудалена от вершин C и D, поэтому её ортогональная проекция K на плоскость основания ABCD также равноудалена от C и D, а значит, лежит на серединном перпендикуляре к отрезку CD. Поскольку || и = , четырёхугольник – прямоугольник, поэтому OK= =5. Продолжим отрезок KO до пересечения с отрезком AB в точке M. Тогда M – середина AB и MK=MO+OK= . Из прямоугольных треугольников MKB и находим, что:

9. На ребре AD и диагонали параллелепипеда взяты соответственно точки M и N, причём прямая MN параллельна плоскости и AM:AD = 1:5. Найдите отношение .

Решение

Пусть P – центр параллелограмма ABCD. Плоскости и пересекаются по прямой , поэтому прямые и пересекаются в некоторой точке Q, причём

Быстрый поиск по Банку Рефератов: | Описание работы | Похожие работы

По теореме о пересечении двух параллельных плоскостей третьей плоскости α и пересекаются по прямой, проходящей через точку E параллельно . Ясно, что точка пересечения этой прямой с прямой и есть точка N (прямая MN лежит в плоскости, параллельной плоскости ). Рассмотрим параллелограмм . Так как

то

10. Три отрезка, не лежащие в одной плоскости, имеют общую точку и делятся этой точкой пополам. Докажите, что концы этих отрезков служат вершинами параллелепипеда.

Решение

Пусть O – общая середина отрезков , и . Тогда AB|| и AD|| . Значит, плоскости ABD и параллельны. Аналогично, плоскость параллельна плоскости . В плоскостях ABD и возьмём соответственно точки C и так, что ABCD и – параллелограммы. Так как CD||AB, AB|| и || , то CD|| . Поэтому плоскости и также параллельны. Шестигранник , образован пересечением трёх пар параллельных плоскостей. Следовательно, это параллелепипед


Наклонная призма


Объем наклонной призмы

V=Sпсa,

где Sпс - площадь перпендикулярного сечения наклонной призмы, a - боковое ребро.

Площадь боковой поверхности наклонной призмы

Sб=Pпсa,

где Pпс - периметр перпендикулярного сечения наклонной призмы, a - боковое ребро.

Площадь полной поверхности наклонной призмы

Sп=Sб+2Sосн,

где Sб, - площадь боковой поверхности наклонной призмы, Sосн - площадь её основания.

Прямая призма


Объем прямой призмы

V=Sоснa,

где Sосн - площадь основания прямой призмы, a - боковое ребро.

Площадь боковой поверхности прямой призмы

Sб=Pоснa,

где Pосн - периметр основания прямой призмы, a - боковое ребро.

Площадь полной поверхности прямой призмы

Sп=Sб+2Sосн,

где Sб, - площадь боковой поверхности прямой призмы, Sосн - площадь основания.

Прямоугольный параллелепипед


Объем прямоугольного параллелепипеда

V=abc,

где a,b,c - измерения прямоугольного параллелепипеда.

Площадь боковой поверхности параллелепипеда

Sб=2c(a+b),

где a, b - стороны основания, c - боковое ребро прямоугольного параллелепипеда.

Площадь полной поверхности прямоугольного параллелепипеда

Sп=2(ab+bc+ac),

где a,b,c - измерения прямоугольного параллелепипеда.

 

Куб

V=a3, Sб=4a2, Sп=6a2,

где a - ребро куба.

Пирамида

Объем пирамиды

 

где Sосн - площадь основания, H - высота.
Площадь боковой поверхности пирамиды равна сумме площадей её боковых граней.
Площадь полной поверхности пирамиды

Sп=Sб+2Sосн,

где Sб - площадь боковой поверхности прямой пирамиды, Sосн - площадь основания.
Площадь боковой поверхности правильной пирамиды

 

где Pосн - периметр основания правильной пирамиды, l - её апофема.

Усеченная пирамида

Объем усеченной пирамиды

 

где S1 , S2 - площади оснований усеченной пирамиды, H - её высота.
Площадь боковой поверхности усеченной пирамиды равна сумме площадей ее боковых граней.
Площадь полной поверхности усеченной пирамиды

Sп=Sб+S1+S2,

где Sб - площадь боковой поверхности пирамиды, S1 , S2 - площади оснований.
Площадь боковой поверхности правильной усеченной пирамиды

 

где P1 , P2 - периметры оснований, а l - ее апофема.

Цилиндр

Объем цилиндра

V=p R 2H,

где R - радиус основания цилиндра, а H - его высота.
Площадь боковой поверхности цилиндра

Sб=2p R H,

где R - радиус основания цилиндра, а H - его высота.
Площадь полной поверхности цилиндра

Sп=2p R H + 2p R2,

где R - радиус основания цилиндра, а H - его высота.

Конус

Объем конуса

 

где R - радиус основания конуса, а H - его высота.
Площадь боковой поверхности конуса.

Sб=2p R L,

где R - радиус основания конуса, а L - его образующая.
Площадь полной поверхности конуса

Sп=2p R (R+L),

где R - радиус основания конуса, а L - его образующая.

Усеченный конус

Объем усеченного конуса

 

где R, r - радиусы оснований усеченного конуса, Н - его высота.
Площадь боковой поверхности усеченного конуса

Sб=p L (R+r),

где R, r - радиусы оснований усеченного конуса, L - его образующая.
Площадь полной поверхности усеченного конуса

Sп=p L (R+r)+p R2+p r2,

где R, r - радиусы оснований усеченного конуса, L - его образующая.

Сфера и шар

Объем шара

 

где R - радиус шара
Площадь сферы (площадь поверхности шара)

S=4p R2,

где R - радиус сферы
Объем шарового сегмента

 

где H - высота шарового сегмента, R - радиус шара
Объем шарового сектора

 

где H - высота соответствующего шарового сектора, R - радиус шара





Поделиться с друзьями:


Дата добавления: 2017-03-18; Мы поможем в написании ваших работ!; просмотров: 833 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2255 - | 2141 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.