Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Теорема 2. Через любую точку пространства вне данной прямой можно провести прямую, параллельную данной прямой, и при том только одну.




Доказательство:

1. Через данную прямую a и точку M, которая не лежит на прямой, проводится плоскость α.

2. Такая плоскость только одна (т.к. через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну).

3. А в плоскости α через точку M можно провести только одну прямую b, которая параллельна прямой a.

 

Теорема 3. Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.

(1. рис.)

(2. рис.)

Доказательство:

Рассмотрим две параллельные прямые a и b и допустим, что прямая b пересекает плоскость α в точке M(1. рис.).

 

Из 1-ой теоремы известно, что через параллельные прямые a и b можно провести только одну плоскость β.

 

Так как точка M находится на прямой b, то M также принадлежит плоскости β(2. рис.). Если у плоскостей α и β есть общая точка M, то у этих плоскостей есть общая прямая c, которая является прямой пересечения этих плоскостей (4 аксиома).

 

Прямые a, b и c находятся в плоскости β.

Если в этой плоскости одна из параллельных прямых b пересекает прямую c, то вторая прямая a тоже пересекает c.

 

Точку пересечения прямых a и c обозначим за K.

Так как точка K находится на прямой c, то K находится в плоскости α и является единственной общей точкой прямой a и плоскости α.

Значит, прямая a пересекает плоскость α в точке K.

 

Теорема 4. Две прямые, параллельные третьей прямой, параллельны.

Дано: a∥cиb∥c

Доказать: a∥b

Доказательство:

Выберем точку M на прямой b.

Через точку M и прямую a, которая не содержит эту точку, можно провести только одну плоскость α (Через прямую и не лежащую на ней точку можно провести только одну плоскость).

 

Возможны два случая:

1) прямая b пересекает плоскость α или 2) прямая b находится в плоскости α.

 

Пусть прямаяbпересекает плоскостьα.

Значит, прямая c, которая параллельна прямой b, тоже пересекает плоскость α. Так как a∥c, то получается, что a тоже пересекает эту плоскость. Но прямая a не может одновременно пересекать плоскость α и находиться в плоскости α. Получаем противоречие, следовательно, предположение, что прямая b пересекает плоскость α, является неверным.

Значит, прямаяbнаходится в плоскостиα.

 

Теперь нужно доказать, что прямые a и b параллельны.

Пусть у прямых a и b есть общая точка L.

Это означает, что через точку L проведены две прямые a и b, которые параллельны прямой c. Но по второй теореме это невозможно. Поэтому предположение неверное, и прямые a и b не имеют общих точек.

Так как прямые a и b находятся в одной плоскости α и у них нет общих точек, то они параллельны





Поделиться с друзьями:


Дата добавления: 2017-03-18; Мы поможем в написании ваших работ!; просмотров: 1904 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Два самых важных дня в твоей жизни: день, когда ты появился на свет, и день, когда понял, зачем. © Марк Твен
==> читать все изречения...

2282 - | 2105 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.