Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Закономірності радіоактивного випромінювання атомних ядер




Альфа - розпад

- розпадом називається випускання ядрами деяких хімічних елементів - частинок.

Альфа-випромінювання відхиляється електричними і магнітними полями, має високу іонізуючу здатність і малу проникну здатність (поглинається шаром алюмінію завтовшки ~ 0,05 мм). - випромінювання – це потік іонізованих атомів гелію. Заряд - частинки дорівнює +2е, а маса рівна масі ядра ізотопа гелію .

Відомо більше ніж дві сотні - активних ядер, в основному важких елементів . Лише невелика група - активних ядер знаходиться в області з масовими числами А=140-160 (рідкісноземельні).

Всередині важких ядер утворюються - частинки, кожна з яких складається з двох протонів і двох нейтронів. Відок­ремленню цих чотирьох нуклонів сприяє властивість насичення ядерних сил. Можливість - розпаду викликана тим, що маса материнського ядра більша від суми мас дочірнього ядра і - частинки.

.

Отже, при - розпаді виділяється енергія

.

Енергія - розпаду виділяється у вигляді кінетичної енергії продуктів розпаду: - частинки і дочірнього ядра. Кінетична енергія між ними розподіляється обернено пропорційно до їх маси, тому практично всю енергію розпаду отри­мує - частинка.

В ядрі - частинок немає, вони утворюються з чотирьох нуклонів лише в момент - розпаду.

Здійсненню - розпаду перешкод­жає значний кулонівський потенціальний бар’єр , який виник при утворенні ядра. Значення в декілька разів перевищує різницю енергій між початковим і кінцевими станами системи при - розпаді (рис 338).

- частинка вилітає з ядра, проходячи крізь заборонену зону, завдяки тунельному ефекту, який характеризується певною прозорістю потенціального бар’єра.

.

Ця формула свідчить про велику чутливість прозорості бар’єра до найменших змін енергії - частинки, що перебуває всередині потенціальної ями. Навіть незначні зміни в значеннях E приводять до того, що величина D буде дуже змінюватись. Цим пояснюються великі відмінності в періодах піврозпаду - випромінювачів – від років до с при порівняно невеликому зростанні енергії - частинок .

Знайдемо зв’язок між сталою розпаду і прозорістю D потенціального бар’єру для -частинки. Заради спрощення замінимо реальний бар’єр прямокутним бар’єром довжиною L. В цьому випадку

,

де n – число ударів - частинок об стінку бар’єра за одиницю часу і , де – швидкість - частинки в ядрі. Величина L=R, де R – радіус ядра. Тоді у випадку прямокутного бар’єра дістанемо

Ця формула свідчить про існування залежності між сталою розпаду і початковою енергією - частинки.

Дослідження кривих питомої іонізації, яку здійснюють - частинки в різних газах, показало, що залежність кіль­кості - частинок N від довжини відрізків шляху R, які ці частинки проходять у певній речовині, зображується кривою, поданою на рис. 339. До деякого значення кількість частинок залишається майже сталою. Потім кількість частинок, які пройшли шлях , швидко спадає. Довжини пробігів - частинок мало від­різняються від деякої величини , що є експериментальним значенням пробігу -частинок. Проходячи через речовину, - частинка витрачає свою енергію на не­пружні зіткнення з атомами, переважно на їх іонізацію. Очевидно, що довжина пробігу - частинки повинна залежати від її початкової енергії. Дослідним шляхом Гейгер знайшов емпіричну формулу, яка пов’язує початкову швидкість - частинки з її пробігом у повітрі при :

, ,

де b – деяка стала.

Г. Гейгер і Дж. Неттол на підставі аналізу численних дослідів установили співвідношення, яке називають законом Гейгера-Неттола:

чим менший період піврозпаду або більша стала розпаду радіоактивного елементу, тим більший пробіг - частинок, які він випускає.

Закон Гейгера-Неттола записують формулою

або ,

– емпіричні константи.

Дослідження показують, що зде­більшого ядра випромінюють не одну, а кілька груп - частинок, енергії яких ут­ворюють дискретний спектр. Його називають тонкою структурою - спектра. На рис. 340 показано схематичне пояснення виникнення різних груп - частинок, що випромінюються при розпаді ядра . Зліва на рисунку наведено енергетичні рів­ні дочірнього ядра .

У збуджених станах дочірнє ядро знаходиться доволі малий проміжок часу і переходить у стани з меншою енергією або в основний стан. При цьому відбувається випромінювання фотонів. На рис. 340 показано виникнення - фотонів шести різних енергій.

Бета - розпад

- розпадом називається процес самочинного перетворення нестабільного ядра в ядро-ізобар із зарядом, який відмінний на , за рахунок випускання електрона (позитрона) або захоплення електрона.

Період піврозпаду - радіоактивних ядер змінюється від до років. Енергія - розпаду знаходиться в межах від (для ) до (для ).

- випромінювання відхиляється електричними і магнітними полями; його іонізуюча здатність значно менша (приблизно на два порядки), а проникна здатність значно більша (поглинається шаром алюмінію 2 мм), ніж у - частинок. - випромінювання – це потік швидких електронів.

Терміном b - розпад називають три типи ядерних перетворень: електронний - розпад, позитронний - розпад, а також електронне захоплення ( або - захоплення).

Явище електронного - розпаду відбувається за правилом зміщення

і супроводжується випромінюванням елек­трона. Електрони, що випромінюються в процесі - розпаду, мають широкий спектр енергій від нуля до деякого максимального значення (рис. 341).

При розпаді кількість нуклонів в ядрі не змінюється. Однак, якщо з ядра випромінюється електрон, який має спін , то спін ядра повинен змінитися на . Таке неузгодження спіну ядра до і після розпаду, а також наявність суцільного
енергетичного спектра випромінюваних електронів привели В. Паулі до гіпотези (1931 р.) про те, що при - розпаді разом з електроном випускається ще одна нейтральна частинка – нейтрино. Нейтрино має нульовий заряд, спін і нульову масу спокою. Нейтрино позначають .

Проте виявилось, що при - розпаді випускається не нейтрино, а антинейтрино, (античастинка за відношенням до нейтрино, яка позначається ).

Гіпотеза про існування нейтрино дала змогу Е. Фермі створити теорію - розпаду (1934), а через 20 років (1956 р.) нейтрино було виявлено експериментально. Такі довгі пошуки нейтрино пов’язані з відсутністю у цієї частинки заряду та маси спокою, а також тим, що іонізуюча здатність нейтрино надзвичайно мала (один акт іонізації припадає на пробіг 500 км в повітрі), а проникна здатність – дуже висока (пробіг нейтрино з енергією 1 МеВ в свинцю порядку м).

Для експериментального виявлення нейтрино використовували метод, який ґрунтується на тому, що в ядерних реакціях виконується закон збереження імпульсу.

Введення нейтрино дозволило пояснити не лише збереження спіна ядра, а й неперервність енергетичного спектра випромінюваних електронів. Суцільний спектр - частинок зумовлений розподілом енергії між електронами і антинейтрино, причому сума енергій обох частинок становить .

Оскільки при - розпаді кількість нуклонів в ядрі не змінюється, а Z збільшується на одиницю, то єдиний шлях, яким може відбуватись цей процес, це перетворення одного з нейтронів ядра в протон з одночасним утворенням електрона і антинейтрино:

.

Цей процес супроводжується виконанням законів збереження електричних зарядів, імпульсу і масових чисел.

Прикладом - розпаду може бути така реакція:

.

Явище - розпаду характерне ли­ше для штучно радіоактивних ядер і було вперше виявлено Фредериком та Ірен Жоліо-Кюрі при бомбардуванні різних ядер - частинками. Цей вид радіоактивного розпаду відбувається за таким правилом зміщення:

.

Прикладом - розпаду може бути така реакція перетворення азоту у вуглець :

.

Процес - розпаду проходить за такою схемою: один з протонів ядра перетворюється у нейтрон, випромінюючи при цьому позитрон і нейтрино:

.

Оскільки маса спокою протона мен­ша, ніж маса спокою нейтрона, то для віль­ного протона реакція відбуватися не може. Однак для протона, який знаходиться в яд­рі, внаслідок ядерної взаємодії частинок, ця реакція є енергетично можливою.

Позитрон - – частинка з масою спокою, яка точно дорівнює масі спокою електрона, спіном , і яка має додатний електричний заряд .

Позитрони можуть народжуватись при взаємодії - квантів великих енергій з речовиною. Цей процес відбувається за схемою

.

Для багатьох ядер перетворення протона в нейтрон, крім описаного вище процесу, може відбуватись через електрон­не захоплення, або е - захоплення, при якому ядро спонтанно захоплює електрон з однієї із внутрішніх оболонок атома, ви­пускаючи нейтрино:

.

Необхідність появи нейтрино випливає із закону збереження спіна. Схема е -захоплення:

,

тобто один з протонів ядра перетворюється у нейтрон, заряд ядра зменшується на одиницю і воно зміщується вліво, так само, як і при позитронному розпаді.

Електронне захоплення супровод­жується характеристичним рентгенівським випромінюванням, що виникає при заповненні вакансій, які утворюються в елек­тронній оболонці атома. При е -захопленні, крім нейтрино, ніякі інші частинки не випромінюються. Прикладом електронного захоплення може служити перетворення радіоактивного ядра берилію у стабільне ядро літію:

.





Поделиться с друзьями:


Дата добавления: 2017-03-11; Мы поможем в написании ваших работ!; просмотров: 394 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Либо вы управляете вашим днем, либо день управляет вами. © Джим Рон
==> читать все изречения...

2318 - | 2045 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.