Непоглощающей среде
Игнорируя вывод, приведём конечный вид спектра Ферми (с выводом можно познакомиться, например в [8]).
Распределение величины плотности потока замедляющихся нейтронов в непоглощающих средах (имеются в виду свойства не поглощать замедляющиеся нейтроны, а не тепловые) оказывается подчинённым закономерности:
(5.6.1)
Это выражение справедливо как для простой однородной среды, так и для сложных гомогенных сред, состоящих их нескольких сортов замедляющих ядер. В этом случае в формулу (5.6.1) подставляется сумма значений замедляющей способности k компонентов сложной среды
xSs = x1Ss1 + x2Ss2 + x3Ss3 +... + xkSsk = (5.6.2)
Учитывая классическую зависимость кинетической энергии нейтрона от его скорости (Е = mv2/2) и связь плотности потока и плотности нейтронов одинаковой скорости
выражение для спектра замедляющихся нейтронов можно записать так:
(5.6.3)
Таким образом, величина плотности замедляющихся нейтронов по энергиям в непоглощающей среде распределяется по закону "Е-3/2", то есть плавно возрастает с уменьшением энергии нейтронов в процессе их замедления, и столь же плавно (без скачков и изломов) переходит при Е = Ес в максвелловский спектр тепловых нейтронов (рис.5.9).
В реальной замедляющей среде активной зоны, которой свойственно очень слабое поглощение замедляющихся нейтронов в замедлителе, и заметное поглощение их в топливе твэлов (где содержится резонансный захватчик замедляющихся нейтронов – уран-238), реальный спектр замедляющихся нейтронов проходит ниже изображённого на рис.5.9., но качественно выглядит так же.
n(E)
Спектр тепловых нейтронов (Максвелла)
Спектр замедляющихся нейтронов (Ферми)
E
Ec
Рис.5.9. Граница тепловых и замедляющихся нейтронов - энергия сшивки энергетических
спектров Максвелла и Ферми (спектры ненормированные).
Уже отмечалось, что об энергетическом спектре нейтронов в реакторе имеет смысл говорить только для критического реактора, так как любой энергетический спектр в поглощающей среде имеет динамически равновесный характер: плотность нейтронов любой энергии Е поддерживается неизменной во времени в любом единичном объёме за счёт неизменной разницы скоростей:
- прихода замедляющихся нейтронов на уровень энергии Е из области более высоких энергий;
- ухода замедляющихся нейтронов с уровня энергии Е в область более низких энергий;
- появления в единичном объёме новых нейтронов энергии Е за счёт делений ядер (если таковые имеются в рассматриваемом единичном объёме);
- поглощения нейтронов при энергии Е (если в единичном объёме наличествуют поглотители) и
- утечки нейтронов энергии Е из единичного объёма (понимая под утечкой разницу скоростей ухода и прихода нейтронов с энергией Е в этом единичном объёме).
В рамках одногруппового возрастного приближения договорились считать, что поглощение в диапазоне энергий замедления отсутствует, а заметное поглощение замедляющихся нейтронов в реальных средах учитывать с помощью вероятности избежания резонансного захвата (j). В этом приближении среда активной зоны поглощает только тепловые нейтроны. И если предполагать, что энергетический спектр тепловых нейтронов - максвелловского типа, величина и положение максимума на шкале энергий в нём явно должны зависеть от поглощающей характеристики среды (Sa) и замедляющей способности среды (xSs) в области энергий перехода от замедляющихся нейтронов к тепловым (то есть в области энергии сшивки Ес) и ниже (то есть в пределах самого спектра тепловых нейтронов).
Действительно, поскольку в тепловой области энергий микросечения поглощения изменяются по закону " 1/v " (или" Е-1/2 "), то основное поглощение тепловых нейтронов происходит при более низких энергиях левого крыла спектра Максвелла; чем выше величина микросечения поглощения активной зоны sa (а значит - и Sa), тем больше тепловых нейтронов поглощается при Е < Eнв, тем больше "выедание" левого крыла спектра, а это значит, что положение максимума спектра (характеризуемое Енв - наиболее вероятной энергией тепловых нейтронов) с увеличением поглощающей способности среды должно смещаться вправо, в область более высоких энергий. Иначе говоря, с увеличением поглощающих свойств среды энергетический спектр тепловых нейтронов ужестчается. Но, т.к. положение максимума в спектре тепловых нейтронов определяет температуру нейтронов Тн (ведь Енв= kTн), то можно выразиться иначе: с увеличением поглощающих свойств среды повышается температура нейтронов в ней. И чем больше величина макросечения поглощения среды (Sa) - тем больше величина температуры нейтронов в ней (Тн) отклоняется от её термодинамической температуры (Т) в сторону увеличения.
С другой стороны, чем выше величина замедляющей способности среды (xSs), тем с большей скоростью пополняется за счёт замедления нейтронов весь спектр тепловых нейтронов (в том числе и его левое крыло). Поэтому положение его максимума, наоборот, смещается влево, в область более низких энергий, т.е. с увеличением замедляющей способности среды спектр тепловых нейтронов «умягчается», и температура тепловых нейтронов в среде с лучшими замедляющими свойствами меньше отличается от термодинамической температуры этой среды по сравнению со средой с более слабыми замедляющими свойствами.
Таким образом получается, что температура нейтронов Тн находится в прямой зависимости от величины Sa среды активной зоны и в обратной зависимости - от xSs.
Это дало повод к предположению, что обе зависимости являются пропорциональными, что дает лёгкую возможность построить полуэмпирические зависимости для расчёта температуры нейтронов в тепловом реакторе:
Тн = Тз[1 + 1.8 (Sa/xSs)] - для уран-водных гомогенных сред, (5.6.4) и
Тн = Тз[1 + 0.91(ASa/Ss)] - при использовании других замедлителей (с массовым числом A) (5.6.5)
Таким образом, температура нейтронов в тепловом реакторе - величина, прямо пропорциональная термодинамической температуре активной зоны и величине, обратной коэффициенту замедления среды в ней.
Приведённые формулы получены, строго говоря, для гомогенных смесей топлива и замедлителя, однако, с достаточной точностью могут служить и для оценки температуры нейтронов в гетерогенных активных зонах реакторов соответствующих типов, для чего в них должны подставляться средняя термодинамическая температура замедлителя Тз и величины гомогенизированных макросечений активной зоны Sa и Ss.
*) Гипотеза насчёт пропорциональности Тн,Тз и обратного коэффициента замедления являлась бы строго-доказательной только в том случае, если бы было строго доказано, что энергетический спектр тепловых нейтронов, как бы ни деформировала его среда своими поглощающими и замедляющими свойствами, всегда сохраняет максвелловскую форму.
Разговор был посвящен фермиевскому спектру замедляющихся нейтронов, но был смещен к спектру тепловых нейтронов, чтобы подчеркнуть два важных момента:
- Во-первых, между двумя этими энергетическими спектрами в критическом тепловом реакторе существует какая-то неясная пока взаимосвязь: любое, самое малейшее, изменение в спектре тепловых нейтронов обязательно должно повлечь за собой изменение и в спектре замедляющихся нейтронов, и, наоборот, изменение в фермиевском спектре должно отразиться и на максвелловском распределении тепловых нейтронов. Эту взаимосвязь можно было бы предсказать и без углубленного экскурса в спектры, если просто (по-материалистически) уверовать в то, что всем поведением замедляющихся и тепловых нейтронов управляет одна Среда, только Среда и исключительно Среда. Это Она, благодаря присущим ей природным свойствам, единым образом, с единой закономерностью рождает с определённой скоростью быстрые нейтроны деления, замедляет их с определённой (связанной со скоростью генерации быстрых нейтронов) интенсивностью, поглощает их с определенной (связанной со скоростями генерации и замедления) скоростью, и определяет скорость утечки нейтронов из любого микрообъёма, - и все это природное предопределение свойственно нейтронам любой энергии. Иначе говоря, Среда, в силу своих природных свойств, и расставляет все нейтроны по энергиям в единый энергетический спектр, не являющийся ни спектром Уатта, ни спектром Ферми и ни спектром Максвелла.
- Во-вторых, хотя спектры Уатта, Ферми и Максвелла и отражают закономерности рождения, замедления и поглощения нейтронов, связать их в единое аналитическое выражение для единого энергетического спектра реактора не удаётся, так как спектры Уатта и Максвелла нормированы соответственно на один нейтрон деления и тепловой нейтрон, а спектр Ферми - вообще не является нормированным.
Не стоит воспринимать сказанное как критику существующей физической теории реакторов: скорее, это её очередная проблема, с которой любому человеку, связанному с ядерной энергетикой, следует быть знакомым. Потому, что её разрешение радикальным образом изменит не только систему теоретических представлений и облегчит их восприятие: должны открыться новые возможности для простых и быстрых инженерных расчётов и анализа эксплуатационной безопасности любых реакторов.
Пока же мы вынуждены довольствоваться упомянутой триадой энергетических спектров и для расчётов критических свойств реакторов пользоваться громоздкими (хотя и приближёнными) вычислениями с помощью ЭВМ.