Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Гематоэнцефалический и гематоофтальмический барьеры




Гематоэнцефалический барьер (ГЭБ) состоит из двухмембранного слоя эндотелиоцитов, базальной мембраны (волокна, перициты) и астроцитарной муфты. Капилляры образуют межэндотелиальную связь без пор и фенестров. Прочность межэндотелиальных контактов поддерживается высокомолекулярными белками — кадгеринами. Эндотелий капилляров мозга не способен к пиноцитозу.

Перициты как аналоги гладких мышц поддерживают тонус базальной мембраны и выполняют сократительную функцию. Аминопептидаза этих клеток расщепляет нейромедиаторы пептидной структуры. Перициты, синтезируя фактор роста, стимулируют регенерацию эндотелия.

Астроцитарная муфта образована отростками астроцитов и покрывает 85 — 90 % поверхности ГЭБ. Пресинаптическая мембрана астроцитов контактирует с эндотелием и базальной мембраной. Астроциты обладают многофункциональностью. Они регулируют обмен нейромедиаторов и иммунный ответ мозга, участвуют в синтезе миелина, активном транспорте ионов. В астроцитах продуцируется растворимый пептидный фактор, необходимый для формирования плотных контактов эндотелия.

Такое строение ГЭБ характерно для всех отделов головного мозга, кроме гипоталамо-гипофизарной области, где базальная мембрана имеет перикапиллярные пространства, а сам барьер обильно фенестрирован.

Через ГЭБ проникают не связанные с белками молекулы размером менее 10 — 15 нм. Типы транспорта — простая диффузия липофильных веществ, облегченная диффузия глюкозы, аминокислот, ионов кальция, магния, йода, активная диффузия.

Осмотически активные средства (маннит), повреждая ГЭБ, усиливают отек мозга и способствуют поступлению в него эндогенных токсических веществ (билирубин).

Удаление лекарственных средств из мозга происходит при участии сосудистого сплетения желудочков по типу секреции веществ в почечных канальцах или с током спинномозговой жидкости через ворсинки паутинной оболочки. Гематоофтальмический барьер находится между кровью капилляров и внутриглазной жидкостью в камерах глаза. В среды глаза хорошо проникают липидорастворимые препараты.

3.Плацентарный барьер разделяет кровообращение матери и плода. Проникновение через этот барьер зависит от физико-химических свойств лекарственных средств, их концентрации в крови, морфофункционального состояния плаценты в разные сроки беременности, плацентарного кровотока. К плоду поступают не связанные с белками, липидорастворимые лекарственные средства с молекулярной массой менее 1 кДа, не проникают четвертичные азотистые соединения и высокомолекулярные вещества (плазмозаменители, гепарин, инсулин). Типы транспорта через плаценту — простая диффузия, активный перенос и пиноцитоз. Особенности кровообращения плода увеличивают опасность повреждающего действия лекарственных средств. После прохождения через плаценту лекарства попадают в пупочную вену, затем 60 — 80 % крови направляется в печень через воротную вену, а остальные 20 — 40 % пуповинного кровотока через шунт поступают в нижнюю полую вену и системный кровоток без детоксикации в печени. Многие ЛС противопоказаны при беременности. ЛС употребляют 90% беременных женщин, что обусловливает 1 % врожденной патологии. С точки зрения потенциальной опасности лекарственного воздействия на эмбрион и плод выделяют 5 критических периодов: предшествующий зачатию; с момента зачатия до 11 дня; с 11 дня до 3 нед.; с 4 по 9 нед.; с 9 нед. до родов. ДЕПОНИРОВАНИЕ ЛС ЛС трансп-ся к циторецепторам и органам элиминации в форме депо с белками крови. Слабые к-ты связываются с альбуминами, слабые основания — с кислыми α1-гликопротеинами и липопротеинами. Адсорбция на белках обратима и происходит по принципу комплементарности при участии вандерваальсовых, водородных, ионных, дипольных сил взаимодействия, алкилирование белков наблюдается редко. Как известно, катионы аминов образуют с анионами карбоновых кислот в молекулах белков ионные и водородные связи, которые дополнительно стабилизируются вандерваальсовыми связями. При взаимодействии лекарственных средств с ароматическими группами белков гидрофобные связи дополняются комплексонообразованием с переносом заряда. Р-я с белками крови превращает водорастворимые ЛС в липофильные. Связанная с белками фракция, не оказывая фармакологического действия, возмещает удаленные из циркуляции молекулы активной свободной фракции. Период полуэлиминации комплекса ЛС с белками крови составляет всего 20 мс. При высокой степени связывании с белками действие лекарственных средств замедляется. ЛС с выраженным аффинитетом к тканевым белкам имеют концентрацию в крови ниже, чем в органах. Связь с белками замедляет гломерулярную фильтрацию лекарственных средств, но мало влияет на их секрецию в почечных канальцах и биотрансформацию. ЛС могут конкурировать за связь с белками между собой и с естественными метаболитами организма. При высокой концентрации лекарственных средств наступает насыщение мест связывания на белках крови. Белковая связь играет роль в возникновении аллергических реакций. Лекарственные средства адсорбируются также на эритроцитах (местные анестетики, викасол, нитрофураны) и тромбоцитах (серотонин). Связывание лекарственных средств с белками крови зависит от многих факторов. В детском возрасте этот процесс происходит в меньшей степени, чем у взрослых (для лидокаина, анаприлина, дифенина, сибазона, теофиллина, ампициллина), так как у детей уменьшен синтез альбуминов и кислых α1-гликопротеинов в печени, белки имеют качественно другую последовательность аминокислот, перегружены продуктами метаболизма (билирубин, жирные кислоты, стероиды). В крови пожилых людей возрастает количество α1-гликопротеинов, на 10 — 20% сниж-ся содержание альбуминов. В связи с этим умен-ся доля свободной фракции противоаритмических ср-в лидокаина и дизопирамида, вдвое повышается концентрация свободного напроксена. Им-ся сообщения о зав-ти от пола в связывании с белками антидепрессанта имипрамина, транквилизатора сибазона, антикоагулянта варфарина. У женщин связь лекарственных средств с белками модифицируют эстрогены. Липидорастворимые ЛС депонируются в жировой ткани, н-р, наркозный пре-т тиопентал-натрий после инъекции в вену быстро поступает в головной мозг и вызывает наркоз, но уже спустя 20 — 25 мин его основное кол-во оказ-ся в скелетных мышцах, а затем в жировых депо. Из депо тиопентал медленно вновь поступает в кровь и головной мозг, поэтому в посленаркозном периоде возникают депрессия и сонливость.

6.Биотрансформация лекарственных средств: биологическое значение, ферменты и типы реакций. Изменение биотрансформации лекарственных средств в зависимости от возраста, пола, индивидуальных особенностей организма (энзимопатиях)

Биотрансформация - метаболические превращения ЛС. В бол-ве р-ций обр-ся метаболиты, более полярные, чем исходные ЛС. Полярные метаболиты хуже растворяются в липидах, но обладают высокой растворимостью в воде, меньше подвергаются энтерогепатической циркуляции (выведение с желчью в кишечник и повторное всасывание в кровь) и реабсорбции в почечных канальцах.

Эндобиотики подвергаются превращениям под влиянием специфических ферментов, осуществляющих метаболизм их эндогенных аналогов. Ксенобиотики используют для метаболизма ферменты с малой субстратной специфичностью, например, окисляются при участии цитохрома Р- 450.

Биотрансформация ксенобиотиков происходит в печени (90 — 95 %), слизистой оболочке тонкого кишечника, почках, легких, коже, крови. Наиболее изучены процессы биотрансформации на мембранах гладкого эндоплазматического ретикулума (ЭПР) печени. Опыты показали, что при гомогенизации и ультрацентрифугировании клеток канальцы ЭПР разрываются и превращаются в функционально активные фрагменты — микросомы. Реакции биотрансформации протекают также в ядре, цитозоле, митохондриях, на плазматической мембране. Процессы биотрансформации разделяют на две фазы. В р-ях 1фазы — метаболической трансформации — молекулы лекарственных средств подвергаются окислению, восстановлению или гидролизу. Большинство лекарственных средств преобразуется в неактивные метаболиты, но также могут появляться активные и токсические производные. В редких случаях изменяется характер фармакологической активности (антидепрессант ипрониазид превращается в противотуберкулезное средство изониазид). Во второй фазе — реакциях конъюгации — лекарственные средства присоединяют ковалентной связью полярные фрагменты с образованием неактивных продуктов. Для реакций конъюгации необходима энергия. 1.Окисление В ЭПР функционируют НАДФ•Н- и НАД•Н-зависимые дыхательные цепи. В НАДФ•Н-зависимой системе терминальным переносчиком электронов является цитохром Р- 450 — мембраносвязанный липофильный фермент группы многоцелевых монооксигеназ[1], гемопротеин, состоящий из белка и системы порфирина с трехвалентным железом. буква Р в названии происходит от слова пигмент, число 450 означает, что восстановленный, связанный с окисью углерода цитохром максимально поглощает свет с длиной волны 450 нм. Цитохром Р- 450 глубоко погружен в липидный бислой мембраны ЭПР и функционирует совместно с НАДФ•Н-зависимой цитохром Р- 450-редуктазой (коферменты — флавинадениндинуклеотид и флавинаденин-мононуклеотид). Соотношение количества молекул цитохрома Р- 450 и редуктазы составляет 10:1. Активный центр этих ферментов ориентирован на цитоплазматическую поверхность ЭПР. Цикл окисления лекарственных средств при участии цитохрома Р- 450 состоит из следующих реакций: окисленный цитохром Р- 450 присоединяет лекарственное средство; бинарный комплекс цитохром — лекарство восстанавливается цитохром Р- 450-редуктазой, используя электрон НАДФ•Н; восстановленный комплекс цитохром Р- 450 — лекарство связывается с молекулярным (триплетным) кислородом; происходит активация кислорода электроном НАДФ•Н (триплетный кислород становится синглетным); на финальном этапе один атом кислорода включается в молекулу окисляемого лекарственного средства, второй — включается в молекулу воды; цитохром Р- 450 регенерирует в исходную окисленную форму. Реакция окисления ксенобиотиков при участии цитохрома Р-450 расщепляется с образованием свободных радикалов кислорода и токсических промежуточных продуктов (эпоксиды, N-, S-окиси, альдегиды). Свободные радикалы и активные интермедиаты, инициируя перекисное окисление мембранных липидов, вызывают некроз клеток, появление неоантигенов, тератогенный, эмбриотоксический эффекты, мутации, канцерогенез и ускорение старения. По этой причине не существует абсолютно безвредных ксенобиотиков. Токсические продукты биотрансформации обезвреживаются конъюгацией с восстановленным глутатионом и ковалентным связыванием с альбуминами. Повреждение молекулы альбумина не опасно для организма, так как этот белок синтезируется в печени со скоростью 10 — 16г в сут. и присутствует в высоких концентрациях в ЭПР. Ксенобиотики в процессе окисления могут разрушать цитохром Р- 450. Такие вещества получили название «суицидные субстраты». Свойствами «суицидных субстратов» обладают четыреххлористый углерод, фторотан, парацетамол, преобразуемые цитохромом Р- 450 в свободные радикалы. Их эффект можно рассматривать не только как токсический, но и как защитный — элиминируются молекулы цитохрома Р- 450, генерирующие реакционноспособные метаболиты.

2.Восстановление Реакции восстановления характерны для альдегидов, кетонов и карбоновых кислот. В ряде случаев восстановление и окисление катализируются одним и тем же ферментом и являются обратимыми. Восстанавливаются окисленные метаболиты лекарственных средств — кетоны и карбоновые кислоты (фенамин превращается в фенилизопропанол через стадию фенилацетона).

Ароматические соединения, содержащие нитрогруппу, подвергаются в анаэробных условиях нитроредукции. Промежуточные продукты этой реакции — нитрозо- и гидроксиламиносоединения. В печени функционируют микросомальная и цитоплазматическая нитроредуктазы, в кишечнике — бактериальная нитроредуктаза.

Лекарственные средства с азогруппой восстанавливаются в первичные амины в микросомах печени и кишечной микрофлорой.

3.Гидролиз Гидролиз необходим для биотрансформации лекарственных средств, имеющих строение сложных эфиров и замещенных амидов. Происходит в цитозоле и ЭПР эпителия кишечника и гепатоцитов, а также в крови при участии эстераз и амидаз. При гидролизе молекулы лекарственных средств распадаются на фрагменты, один из которых — кислотный или спиртовый — может проявлять фармакологическую активность. В медицине используют пролекарства, активируемые гидролазами организма, например, левомицетина стеарат, не обладающий горьким вкусом левомицетина, в кишечнике освобождает активный антибиотик.

4.Конъюгация Наибольшее значение имеет глюкуронирование — присоединение активированной уридиндифосфатом (УДФ) глюкуроновой кислоты к алифатическим, ароматическим спиртам, карбоновым кислотам, веществам с аминогруппой и сульфгидрильной группой. Глюкуронирование катализирует УДФ-глюкуронилтрансфераза. Этот фермент функционирует в ЭПР и цитозоле клеток печени, почек, кишечника, кожи. Семейство глюкуронилтрансфераз включает более 20 изоферментов.

Сульфатирование представляет собой перенос неорганического сульфата от 3'-фосфоаденозил-5'-фосфосульфата на гидроксил алифатических спиртов и фенолов при участии фермента цитозоля — сульфотрансферазы. Некоторые лекарственные средства в малых дозах образуют сульфоконъюгаты, в больших дозах — глюкурониды. При ацетилировании уксусная кислота ацетилкоэнзима А присоединяется к аминам, гидразинам, сульфаниламидам. Реакция катализируется ацетилтрансферазой цитозоля клеток. Ацетилированные метаболиты плохо растворяются в воде и элиминируются медленно. Метилирование — перенос метила от S-аденозилметионина на лекарственное средство под влиянием метилтрансферазы. Это единственная реакция, которая не сопровождается образованием полярных метаболитов.

Индивидуальные особенности биотрансформации Особенностью человека является относительно раннее появление в онтогенезе ферментных систем, обеспечивающих метаболизм лекарственных средств. Система ферментов печени начинает функционировать в гестационном периоде (6 — 8-я нед. развития). Биотрансформацию осуществляет также плацента. К моменту рождения в печени могут окисляться многие химические соединения. Однако активность ферментов биотрансформации у новорожденных составляет только 20 — 80% активности у взрослых. У новорожденных отмечаются качественные отличия в характере биотрансформации. Ф-ет атипичный изофермент цитохрома Р- 450 ЗА7, преобладают реакции метилирования (теофиллин превращается в кофеин). В пожилом возрасте метаболическая трансформация ЛС (анаприлин, транквилизаторы, антидепрессанты) замедляется вследствие снижения на 18 — 25 % массы паренхимы печени, перестройки ее стр-ры, накопления в гепатоцитах липофусцина, ухудшения печеночного кровотока, уменьшения активности цитохрома Р- 450. Р-ции глюкуронивания обычно не нарушаются. Возможно качественное изменение р-ций биотрансформации у пожилых людей. Известно, что у лиц молодого возраста преобладает ацетилирование изониазида, а у пожилых людей — окисление. У женщин выше, чем у мужчин, активность цитохрома Р- 450 ЗА4 печени, поэтому значительно быстрее происходит элиминация субстратов этого изофермента — эритромицина, верапамила и мидазолама. Эстрогены ингибируют активность цитохромов Р- 450 1А2 и 2D6, что замедляет инактивацию нейролептика клозапина и антидепрессанта нортриптилина. В печени женщин медленнее протекает конъюгация салициловой кислоты с глицином. При беременности биотрансформация ряда лекарственных средств (дифенин, гидрокортизон) замедляется, так как гормоны прогестерон и прегнандиол ингибируют цитохром Р- 450 и глюкуронилтрансферазу. При голодании окисление лекарственных средств тормозится, так как возникает дефицит цитохрома Р- 450 и микросомальных белков, изменяется структура ЭПР печени. Напротив, реакции глюкуронирования при безбелковой диете усиливаются. Недостаток в пищевом рационе липотропных веществ — метионина, холина, цианокобаламина сопровождается угнетением биотрансформации из-за ожирения печени. Ненасыщенные жирные кислоты, витамины А, В1, С и E стимулируют биотрансформацию. Углеводы повышают глюкуронирование, серосодержащие аминокислоты — сульфатирование. Существенное нарушение биотрансформации возникает при патологии печени. У больных гепатитом и циррозом уменьшается активность цитохрома Р- 450 и систем конъюгации, ухудшается белковосинтетическая функция печени, формируются портокавальные анастомозы (между воротной и нижней полой венами). Возможны индивидуальные колебания скорости биотрансформации, обусловленные генетическими различиями активности ферментов.

Биотрансформация и эффекты лекарственных средств при энзимопатиях Различают явные и скрытые энзимопатии. При явных энзимопатиях наблюдаются как изменения фармакокинетики и фармакодинамики, так и нарушения биохимических процессов в организме вне приема лекарственных средств. При скрытых энзимопатиях нарушения возникают только в результате приема лекарственных средств.

Атипичную реакцию на лекарственные средства, примененные в терапевтических дозах, называют идиосинкразией. К явным наследственным дефектам относится недостаточность глюкозо-6-фосфатдегидрогеназы. Глюкозо-6-фосфатдегидрогеназа катализирует пентозофосфатный шунт, имеющий большое значение для нормальной функции эритроцитов. В этом цикле образуется НАДФ۰Н, участвующий в восстановлении глутатиона (фактор антиперекисной защиты) и метгемоглобина.

При недостаточности глюкозо-6-фосфатдегидрогеназы прием лекарственных средств со свойствами сильных окислителей, транспортируемых эритроцитами, ведет к развитию массивного гемолиза и гемолитического криза. В число опасных препаратов входят некоторые местные анестетики, кислота ацетилсалициловая, парацетамол, нитрофураны, сульфаниламиды, противомалярийные средства хинин, хлорохин и примахин, левомицетин, метиленовый синий, синтетический витамин К (викасол).

При недостаточности каталазы нарушается нейтрализация перекисей. Эта явная энзимопатия проявляется рецидивирующими изъязвлениями и атрофией десен, гангреной ротовой полости и носоглотки, выпадением зубов. Скрытой энзимопатией является дефект псевдохолинэстеразы крови. Этот фермент представляет собой гликопротеин и катализирует гидролиз сложных эфиров (миорелаксант дитилин, местные анестетики кокаин, новокаин, дикаин, анестезин). Атипичная псевдохолинэстераза медленно гидролизует дитилин, поэтому паралич дыхательной мускулатуры и остановка дыхания при действии этого миорелаксанта пролонгируются с 6 — 8 мин до 2 — 3 ч. Атипичная псевдохолинэстераза выявляется во время хирургических операций с применением дитилина.

 

 

Пути выведения ЛС из организма, факторы, влияющие на экскрецию. Элиминация лекарственных веществ, её составные части. Константа скорости элиминации, период полужизни (t 1/2) и клиренс.

Лекарственные средства и их полярные метаболиты выводятся из организма с мочой, калом, выдыхаемым воздухом, секретами желез. Удаление многих препаратов из клеток катализирует гликопротеин Р — фосфогликопротеин, обладающий свойствами АТФ-азы. Полипептидная цепь гликопротеина Р содержит 1280 аминокислотных остатков, образуя 12 трансмембранных доменов и 2 АТФ-связывающих центра.

В почках лекарственные средства подвергаются фильтрации, секреции и реабсорбции. Хорошо фильтруются не связанные с белками лекарства и их метаболиты с молекулярной массой не более 5 кДа. Препараты с молекулярной массой 60 кДа не способны к фильтрации. В промежуточном диапазоне молекулярной массы скорость фильтрации невелика и зависит от физико-химических свойств лекарственного средства. 4 — 10% поверхности капилляров почечных клубочков занято порами диаметром 2 — 4 нм.

Интенсивность фильтрации прямо зависит от кровоснабжения почек, АД и находится в обратной зависимости от коллоидно-осмотического давления крови и давления в капсуле клубочка. Фильтрация снижается при воспалительных и дегенеративных нарушениях в клубочках, спазме сосудов почек, сердечной недостаточности, коллапсе, шоке. Липидорастворимые лекарственные средства легче фильтруются, но затем подвергаются значительной реабсорбции в канальцах, так что их экскреция оказывается сравнительно небольшой.

В канальцах почек липидорастворимые препараты реабсорбируются простой диффузией, при этом лекарства — слабые кислоты всасываются более интенсивно при кислой реакции мочи (в норме рН мочи = 4 — 6), лекарства — слабые основания — при щелочной реакции. Модификацией химического строения лекарственных средств можно изменять их реабсорбцию. Известно, что сульфаниламидные препараты короткого действия уросульфан и этазол выводятся почками в активной форме и не реабсорбируются, создавая высокую бактериостатическую концентрацию в моче; напротив, сульфадиметоксин и сульфален полностью подвергаются реабсорбции, что значительно пролонгирует их резорбтивные эффекты.

В проксимальных извитых канальцах происходит секреция лекарств, обладающих свойствами как кислот (нестероидные противовоспалительные средства, мочегонные препараты диакарб, фуросемид, гидрохлортиазид, пенициллины, цефалоспорины), так и оснований (ганглиоблокаторы, миорелаксанты, трициклические антидепрессанты, хинидин, хинин). Секрецию осуществляют транспортеры органических анионов. Это суперсемейство натрий-независимых транспортных полипептидов подразделяется на 6 семейств и 13 подсемейств. У человека функционируют 36 транспортеров.

Лекарственные средства могут конкурировать между собой и с метаболитами организма за связь с белками-переносчиками. Клинические последствия такой конкуренции существенны, если секреции подвергается более 80 % лекарства, у больного нарушены фильтрация и реабсорбция. Известно, что фуросемид, замедляя секрецию индометацина и аминогликозидов, усиливает их побочные эффекты. Мочегонные средства уменьшают секрецию мочевой кислоты, что вызывает гиперурикемию и обострение латентной подагры.

У детей функции почек и экскреция лекарственных средств с мочой снижены по сравнению с показателями у взрослых людей. Фильтрация у детей достигает уровня взрослых только к 2 — 2,5 мес. жизни. Реабсорбция лекарственных средств в детском возрасте снижена вследствие уменьшенного количества нефронов и незрелости систем транспорта. Секреция лекарственных средств развивается только к 8 мес. жизни.

В пожилом возрасте возникает атеросклероз сосудов почек, на 30 % уменьшается количество функционирующих клубочков, ослабляются фильтрация и канальцевая секреция. Эти нарушения замедляют выделение почками многих лекарственных средств — кислоты ацетилсалициловой, бутадиона, дигоксина, противоаритмического препарата новокаинамида, антибиотиков (цефалоспорины, аминогликозиды).

При беременности экскреция лекарственных средств ускоряется, так как почечный кровоток возрастает вдвое, скорость клубочковой фильтрации — на 70%. Наблюдается тенденция к повышению рН первичной мочи.

В полость желудка выделяются лекарственные средства — основания (морфин). Экскреция в желчь происходит через мембраны гепатоцитов путем фильтрации (глюкоза, ионы) и активной секреции (дигоксин, ампициллин, рифампицин, тетрациклин, эритромицин). Концентрация в желчи препаратов, подвергающихся секреции, в 10 — 100 раз выше, чем в крови.

С калом выводятся вещества, не всосавшиеся в кишечнике (например, сульфиды тяжелых металлов), а также экскретированные с желчью и стенкой самого кишечника. Липидорастворимые лекарственные средства и их глюкурониды после гидролиза β - глюкуронидазой кишечных бактерий могут участвовать в энтерогепатической циркуляции.

С выдыхаемым воздухом удаляются летучие и газообразные вещества (спирт этиловый, средства для ингаляционного наркоза). Бронхиальные железы выводят анионы йода, брома, камфору. Эти вещества, раздражая бронхи, повышают их секреторную функцию и вызывают отхаркивающий эффект.

Экскреции слюнными и потовыми железами подвергаются йодиды, бромиды, препараты железа, барбитураты, салицилаты, сульфаниламиды, некоторые антибиотики. Возможно раздражение кожи (при хроническом отравлении бромидами появляется угреподобная сыпь — бромодерма). Выделение железа потовыми железами пропорционально интенсивности потоотделения и может становиться причиной гипохромной анемии.

Слезными железами выводятся антибиотики и сульфаниламиды, что находит практическое использование в офтальмологии.

При грудном вскармливании необходимо учитывать выделение лекарственных средств молочными железами. Эпителий молочных желез отделяет кровь от молока (рН=6,5 — 7), поэтому более проницаем для лекарств основного характера, которые могут накапливаться в молоке. Проникновение лекарственных средств в молоко зависит также от их концентрации в крови и степени связывания с белками. Основной тип транспорта через эпителий молочных желез — простая диффузия, иногда лекарства подвергаются активному транспорту в молоко специфическими белками. В молоке, представляющем собой жировую эмульсию, липидорастворимые препараты (барбитураты) концентрируются в жировой фракции.

Элиминация — это удаление лекарственных средств из организма в результате биотрансформации и экскреции.

Лекарственные средства элиминируются только из центральной камеры. Лекарства, находящиеся в периферической камере, предварительно транспортируются в центральную камеру, а затем подвергаются элиминации.

Элиминация лекарственных средств из плазмы крови происходит согласно экспоненциальной кинетике первого порядка — выводится постоянная часть от концентрации за единицу времени. При работе систем элиминации в условиях насыщения возникает кинетика нулевого порядка — выводится постоянное количество препарата за единицу времени.

Элиминацию лекарственных средств характеризует ряд фармакокинетических параметров:

· константа скорости элиминации — часть от концентрации в крови, удаляемая за единицу времени (вычисляется в %);

· период полуэлиминации — время, за которое концентрация в крови снижается наполовину (Т1/2);

· клиренс (англ. clearance — очищение) — объем жидких сред организма, освобождающихся от лекарственных средств в результате биотрансформации, выведения с желчью и мочой (вычисляется в мл/мин/кг).

Различают печеночный (метаболический, желчный) и почечный клиренсы. Например, у циметидина — противогистаминного средства, применяемого для терапии язвенной болезни, почечный клиренс равен 600 мл/мин, метаболический — 200 мл/мин, желчный — 10 мл/мин. Клиренс зависит от состояния ферментных систем печени и интенсивности печеночного кровотока. Для элиминации препарата с быстрым метаболизмом в печени — местного анестетика лидокаина — основное значение имеет печеночный кровоток, для элиминации антипсихотических средств группы фенотиазина — активность ферментных систем детоксикации.

При повторном применении лекарственных средств в биофазе циторецепторов создается равновесное состояние, когда количество поступающего препарата равно количеству элиминируемого. При равновесном состоянии концентрация колеблется в небольших пределах, а фармакологические эффекты проявляются в полной мере. Чем короче период полуэлиминации, тем скорее достигается равновесная концентрация и тем больше разница между максимальной и минимальной концентрациями. Обычно равновесное состояние наступает через 3 — 5 периодов полуэлиминации.

 

Механизмы действия лекарственных веществ, их краткая характеристика. Рецепторный механизм действия лекарственных веществ, типы рецепторов. Лекарственные вещества как агонисты (в т.ч. частичные) и антагонисты лигандов. Взаимодействие лекарств со специфическими рецепторами биологически активных веществ. Роль цАМФ, фосфатидилинозитола и других вторичных медиаторов (мессенджеров) в механизмах действия лекарственных средств.





Поделиться с друзьями:


Дата добавления: 2017-02-25; Мы поможем в написании ваших работ!; просмотров: 884 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Либо вы управляете вашим днем, либо день управляет вами. © Джим Рон
==> читать все изречения...

2304 - | 2036 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.