Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Система плоскостей линейной перспективы




При рассмотрении метода линейной перспективы следует различать следующие основные точки, линии, плоскости и части пространства (рис.73):

S – точка зрения (центр проецирования);

S1 – основание точки зрения (точка стояния);

P – главная точка стояния;

P0 – основание главной точки картины;

П1 – предметная плоскость;

П/ - картинная плоскость;

Г – плоскость горизонта;

N – плоскость, параллельная П/ и проходящая через точку S, - нейтральная

Плоскость;

O1 – O2 – основание картины;

h – h – линия горизонта;

S – P – главный луч картины ;

d – главное расстояние;

H – высота горизонта.

Пространство до плоскости N называется мнимым, между плоскостями N и П/ промежуточным, а за плоскостью П/ предметным.

Для построения перспективы необходимо знать положение точки S относительно плоскостей П/ и П1.

ПЕРСПЕКТИВЫ ТОЧЕК, РАСПОЛОЖЕННЫХ В РАЗЛИЧНЫХ

ЧАСТЯХ ПРОСТРАНСТВА.

Рассмотрим точку А в предметном пространстве и проследим за тем, как будут изменяться положения ее перспективы А/ и вторичной проекции А1/ при движении точки А вдоль проецирующего луча SA (рис.74).

Из рис. 74 видно, что положение точки в той или иной части пространства относительно плоскости картины П/ определяется положением ее вторичной проекции в плоскости картины П/ относительно линии горизонта h – h и линии основания картины O1 – O2.

Вторичная проекция бесконечно удаленной точки предметного пространства (точка F) должна находиться на линии горизонта (линии h – h).

Если точки равноудалены от плоскости картины, то их вторичные проекции находятся на одинаковом расстоянии от основания картины (линии O1 – О2).

       
 
 
   
Рис. 74. Перспективы и вторичные проекции точек, расположенных в разных частях пространства: F – бесконечно удаленная точка предметного пространства; А и В – точки, находящиеся в предметном пространстве; R – точка, лежащая в предметной плоскости; М – точка, лежащая в плоскости картины; L – точка, лежащая в промежуточном пространстве; К - точка, лежащая в мнимом пространстве.


При удалении точки, находящейся в предметном пространстве, от плоскости картины П/ расстояние от ее вторичной проекции А1/ до основания картины

(линии O1 – O2) увеличивается, а вторичные проекции точек находятся между основанием картины (линией O1 – O2) и линией горизонта картины h – h (точки А и В).

Вторичные проекции точек, расположенных в промежуточном пространстве (точка L), находятся ниже основания картины (линии O1 – O2), а расположенных в мнимом пространстве (точка К) – выше линии горизонта.

Вторичная проекция точки, лежащей в плоскости картины П/ (точка М), находится на основании картины (линии O1 – O2).

На основе изложенного материала могут решаться прямые и обратные задачи по построению наглядного изображения (изображение в косоугольной фронтальной диметрической аксонометрической проекции) положения точки в пространстве или ее перспективы и вторичной проекции.

Пример 7. Построить положение точек A, B, C и D в пространстве по заданным их перспективам и вторичным проекциям (прямая задача) и построение перспектив и вторичных проекций по заданному положению точек (обратная задача) (рис. 75).

       
 
 
   
Рис. 75. Построение положения точек по заданным их перспективам и вторичным проекциям.


Алгоритм решения задач следующий. Сначала задается положение предметной плоскости П1 и плоскости картины П, строится линия начала картины(О1 – О2). По заданным параметрам высоты горизонта H и главного расстояния d строится положение точки зрения S относительно плоскости картины П и предметной плоскости П1. Строятся основание точки зрения S1, линия горизонта (h - h), главная точка картины P и основание главной точки картины P0.

- прямая задача (на примере построения точки А) (см. рис. 75).

1. Линия проекционной связи проекций А и А1 продлевается в плоскости картины П до пересечения с линией начала картины (О1 – О2) и через полученную точку А0 и точку стояния S1 проводимслед лучевой проецирующей плоскости;

2. Через точку зрения S и вторичную проекцию точки А1 проводится луч до пересечения с продолжением линии (А0 - S1): полученная точка пересечения А1 – это проекция точки А на предметной плоскости;

3. Точка А найдется на пересечении луча (S - А) с вертикальной линией проекционной связи из точки А1;

- обратная задача (на примере построения точки В) (см. рис. 75).

1. Из точки В опускается вертикальная линия проекционной связи на предметную плоскость П1 – получаем проекцию точки на предметной плоскости В1. Проводим след лучевой проецирующей плоскости через точки В1 и S1;

2. В точке пересечения линии (В1 - S1) с линией начала картины (О1 – О2) получаем точку В0 – проекцию перспективы и вторичной проекции точки В на линии начала картины (О1 – О2). Из точки В0 в плоскости картины П восстанавливаем вертикальную линию проекционной связи;

3. Перспектива точки В найдется в точке пересечения вышеуказанной линии проекционной связи с лучом (S - В), а вторичная проекция В1 - с лучом (SВ1).

ПЕРСПЕКТИВА ПРЯМОЙ ЛИНИИ.

 

Перспективное изображение прямой обратимо, если оно дополнено вторичной проекцией. На рис.76 перспектива прямой АВ и ее вторичная проекция определены перспективами и вторичными проекциями двух ее точек А и В.

 

 

Имея А/В/ и А1/ В1/, можно определить две характерные точки прямой:

F/ - перспектива бесконечно удаленной точки F, принадлежащей прямой АВ; F/ находится на пересечении линии проекционной с из F/ с продолжением прямой А/В/ (вторичная проекция F1/ точки F находится как точка пересечения А1/ В1/ с линией горизонта h – h);

N/ - перспектива начала прямой (началом прямой принято называть точку пересечения прямой с плоскостью картины); N/ находится на пересечении линии проекционной с из N/ с продолжением прямой А/В/ (вторичная проекция N1/ точки N находится как точка пересечения А1/ В1/ с линией начала картины O1 –O2).

Точками F/ и N/ обычно пользуются при построении перспективы различных предметов.

Рис. 69. Положения прямой в пространстве: а – нисходящая прямая; б – восходящая прямая; в – горизонтальная прямая; г – прямая, перпендикулярная плоскости картины; д – прямая, перпендикулярная предметной плоскости; е – прямая, параллельная плоскости картины; ж – прямая, параллельная плоскости картины и предметной плоскости
Положение перспективы несобственной точки прямой на картине (F/) позволяет судить о положении прямой в пространстве (рис.77):


если точка F/ оказалась над линией горизонта, то прямая – восходящая

(рис.77, а);

- если точка F/ оказалась под линией горизонта, то прямая – нисходящая

(рис.77, б);

- - если точка F/ находится на линии горизонта, то прямая расположена горизонтально, параллельно предметной плоскости П1 (рис.77, в);

- если точка F/ совпадает с главной точкой картины (Р), то прямая перпендикулярна плоскости картины П/ (рис.77, г);

- в том случае, когда прямая перпендикулярна предметной плоскости (П1) ее вторичная проекция становится точкой (рис.77, д);

- когда прямая параллельна плоскости картины (П/), ее вторичная проекция параллельна основанию картины(O1 –O2) (рис.77, е).

Пример 8. По положению перспектив и вторичных проекций конечных точек А и В отрезка построить положение прямой АВ в пространстве. Построить характерные точки прямой: начало прямой N и точку схода прямой F (рис.78).

 
 
Рис. 78. Построение положения прямой AB и ее характерных точек: N – начала прямой и F – бесконечно удаленной точки прямой по заданным перспективам и вторичным проекциям конечных точек отрезка.

Алгоритм решения задачи.
Задается положение предметной плоскости П1 и плоскости картины П, строится линия начала картины (О1 – О2). По заданным параметрам высоты горизонта H и главного расстояния d строится положение точки зрения S относительно плоскости картины П и предметной плоскости П1. Строятся основание точки зрения S1, линия горизонта (h - h), главная точка картины P и основание главной точки картины P0.

1. По алгоритму решения задачи, приведенному в предыдущем примере (см. рис.77), строятся точки А и В и прямая АВ;

2. Соединив перспективы точек А и В получаем перспективу прямой АВ, а соединяя вторичные проекции точек А1 и В1 получаем вторичную проекцию прямой А1В1;

3. Продолжив вторичную проекцию прямой А1В1 до пересечения с линией начала картины

(О1 – О2), получаем вторичную проекцию начала прямой N1. Перспектива начала прямой N найдется как точка пересечения вертикальной линии проекционной связи из точки N1 с продолжением перспективы прямой АВ. Точка начала прямой N как точка, лежащая в плоскости картины, совпадает с ее перспективой N ≡ N;

4. Продолжив вторичную проекцию прямой А1В1 до пересечения с линией горизонта

(h – h), получаем вторичную проекцию бесконечно удаленной точки прямой F1. Перспектива бесконечно удаленной точки прямой F найдется как точка пересечения вертикальной линии проекционной связи из точки F1 с продолжением перспективы прямой АВ. Бесконечно удаленная точка прямой F как точка, лежащая в плоскости картины, совпадает с ее перспективой F ≡ F;

5. Правильность и корректность выполненных построений проверяется следующим образом:

- прямая АВ в своем продолжении обязательно должна пройти через точку N;

- прямая, проведенная через точки S и F, должна быть параллельна построенной прямой АВ;

6. Если конечные точки прямой лежат в предметной части пространства или в промежуточном пространстве, то перспектива и вторичная проекция прямой выполняются сплошными основными линиями, проводимыми соответственно между перспективами и вторичными проекциями конечных точек прямой (см. рис. 78);

7. Если одна из точек прямой расположена в мнимом пространстве, то перспектива и вторичная проекция прямой выполняются сплошными основными линиями, которые начинаются соответственно вперспективах и вторичных проекциях конечных точек прямой и выполняются как расходящиеся в противоположные стороны отрезки, лежащими соответственно на линиях АВ и А1В1 (см. рис. 79). Правомочность данного утверждения доказывается построением перспектив и вторичных проекций точек K и L, лежащих на прямой АВ (обратная задача). При этом соответственно точки А и В, и А1 и В1 между собой соединяются сплошной тонкой линией вспомогательных построений.

 


 

 

 


ВЗАИМНОЕ ПОЛОЖЕНИЕ ПРЯМЫХ

Параллельные прямые

Перспективы параллельных прямых пересекаются. Точка пересечения связки параллельных прямых называется точкой схода (см. точку F/ на

рис. 80).

Точка схода горизонтальных параллельных прямых лежит на линии горизонта (рис.81, а).

Если горизонтальные параллельные прямые перпендикулярны к плоскости картины/), то точкой схода их служит главная точка картины (Р) (рис.81, б).

Точка схода параллельных прямых, лежащих в предметной плоскости П1,

       
   
 
 



находится на линии горизонта
(рис.81, в).

Перспективы и вторичные проекции параллельных прямых параллельны, если прямые параллельны плоскости картины/) (рис.82).

 





Поделиться с друзьями:


Дата добавления: 2017-02-25; Мы поможем в написании ваших работ!; просмотров: 814 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2432 - | 2320 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.