Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Краткие теоретические сведения. Многофакторный дисперсионный комплекс – это совокупность исходных наблюдений, позволяющих статистически оценить действие и взаимодействие нескольких изучаемых




Многофакторный дисперсионный комплекс – это совокупность исходных наблюдений, позволяющих статистически оценить действие и взаимодействие нескольких изучаемых факторов на изменчивость результативного признака. Эффект взаимодействия составляет ту часть общего варьирования, которая вызвана различным действием одного фактора при разных градациях другого. Специфическое действие сочетаний в эксперименте выявляется тогда, когда при одной градации первого фактора второй действует слабо или угнетающе, а при другой градации он проявляется сильно и стимулирует развитие результативного признака.

Дисперсионный анализ данных многофакторного комплекса проводится в два этапа. Первый этап – разложение общей вариации результативного признака на варьирование вариантов и остаточное: . На втором этапе сумма квадратов отклонения для вариантов разлагается на компоненты, соответствующие источникам варьирования – главные эффекты изучаемых факторов и их взаимодействия.

В двухфакторном опыте:

.

В трехфакторном:

.

Дисперсионный анализ двухфакторного анализа по изучению градаций фактора А (число вариантов lA) и градаций фактора В (число вариантов lB), проведенного в n повторностях, осуществляется в следующие этапы:

1 Определяются суммы и средние по вариантам, общая сумма и средний урожай по опыту.

2 Вычисляются общая сумма квадратов отклонений, сумма квадратов для вариантов и остатка: ;

;

;

;

.

Для вычисления сумм квадратов по факторам А, В и взаимодействию АВ составляется вспомогательная таблица, в которую записываются суммы по вариантам. Суммируя цифры, находятся суммы А, суммы В и вычисляются суммы квадратов отклонений для главных эффектов и взаимодействия.

Сумма квадратов для фактора А:

при (lА – 1) степенях свободы.

Сумма квадратов для фактора В:

при (lВ – 1) степенях свободы.

Сумма квадратов для взаимодействия АВ находится по разности:

при (lА – 1)×(lВ – 1) степенях свободы.

При дисперсионном анализе ортогональных комплексов используются аддитивные свойства частных дисперсий (сумм квадратов центральных отклонений).

Если взять отношения частных сумм квадратов к общей:

;

.

Каждое из этих отношений будет показывать долю участия отдельной частной дисперсии в образовании общей дисперсии. А так как каждая частная сумма квадратов соответствует одному из частных влияний, то отношение частной суммы квадратов к общей измеряет долю данного влияния в общем суммарном статистическом влиянии всех факторов, определяющих развитие данного результативного признака.

Поэтому доля (выраженная в относительных единицах или в процентах) каждой частной дисперсии в общей их сумме может быть принята за показатель силы влияния, того влияния, которое характеризуется данной частной дисперсией – или одной из факториальных или случайной.

Таким образом, сила влияния фактора (факторов) в дисперсионном анализе измеряется отношением дисперсий частных к общей:

.

Так как этот показатель отражает основной закон разложения общих дисперсий и основное аддитивное свойство частных дисперсий, а также составлен из основных элементов дисперсионного анализа, то
отношение одной из факториальных дисперсий (СV, СА, СB, САB) или случайной дисперсии (CZ) к общей (СY) можно назвать основным показателем силы влияний факторов – организованных и неорганизованных.

Проведение анализа

На 12 опытных делянках проводились экспериментальные работы с посевом кормовых злаковых трав. Факторы a и b отражают объективную ситуацию в процессе проведения опыта (a – освещенность и b – увлажнение) или фактор среды (неорганизованный фактор). Факторы о и р – факторы влияния: о – фоновые, без внесения удобрений, р – с внесением (организованный фактор). Результативным признаком является урожайность. Исходные данные, представленные в таблице 13.1 использовались для выполнения двухфакторного дисперсионного анализа.

Следует отметить, что в проведении анализа в табличном редакторе MS Excel количество повторений (факторы о и р) должно быть одинаковым. В данном случае 3. Для выполнения подобного анализа в программном продукте Statistica 6 количество повторений может быть разновеликим.

Таблица 13.1 – Исходные данные

  a b
o    
o    
o    
p    
p    
p    

 

Шаг 1. Откройте модуль Анализ данных выберите опцию Двухфакторный дисперсионный анализ с повторениями, после чего щелкните мышкой OK.

Шаг 2. В появившемся окне выполнить операции и установки, как показано на рисунке 13.1. Щелкнуть мышкой OK.

Шаг 3. Результат обработки появится в указанном поле (выходной интервал $D$1, таблицы 13.2, 13.3).

 

Рисунок 13.1 – Стартовая панель

Таблица 13.2 – Статистические параметры

  a b Итого
o      
Счет      
Сумма      
Среднее 60,33 50,67 55,5
Дисперсия 510,33 14,33 237,9
p      
Счет      
Сумма      
Среднее 69,33 77,67 73,5
Дисперсия 21,33 40,33 45,5
Итого      
Счет      
Сумма      
Среднее 64,83 64,17  
Дисперсия 236,97 240,57  

 

Таблица 13.3 – Дисперсионный анализ

Источник вариации SS df MS F P-значение F крит. Сила влияния, %
Выборка (2 фактор)       6,63 0,035 5,32 40,7
Столбцы (1 фактор) 1,33   1,33 0,0091 0,93 5,32 0,1
Взаимодействие       1,658 0,23 5,32 10,2
Внутри 1172,67   146,58       49,0
Итого              

 

В рассмотренном примере F - критерий показывает, что нулевая гипотеза отвергается и различие между средними статистически значимо за счет влияния второго фактора (значимо на уровне 0,033, что не превышает критического уровня 0,05). Сила влияния этого фактора составляет около 41%. В свою очередь, по первому фактору и взаимодействию обоих факторов нулевая гипотеза о равенстве средних не отвергается, поскольку критерий Фишера меньше табличного значения и уровень значимости р > 0,05. Поэтому, в данном случае прибавка к урожаю обусловлена только организованным фактором.

Задания для выполнения

1 Введите в таблицу MS Excel исходные данные из Приложения Е (таблица Е1).

2 Выполните расчетные процедуры в соответствии с порядком операций, выполненных в настоящем разделе.

Получите результат и сделайте заключение.

 

Лабораторная работа 14
Многофакторный дисперсионный анализ (многофакторный комплекс в Statistica 6)

Цель работы: научиться выполнять многофакторный дисперсионный анализ в программном продукте Statistica 6.





Поделиться с друзьями:


Дата добавления: 2017-02-25; Мы поможем в написании ваших работ!; просмотров: 408 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студенческая общага - это место, где меня научили готовить 20 блюд из макарон и 40 из доширака. А майонез - это вообще десерт. © Неизвестно
==> читать все изречения...

2319 - | 2275 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.