Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Общий вид задач нелинейного программирования




Тема 2.2. Нелинейное программирование.

1.Общий вид задач нелинейного программирования.

2. Графический метод решения задач нелинейного программирования.

3. Метод множителей Лагранжа.

4. Практические занятия. 1

4.1. Решение задач нелинейного программирования графическим методом.

4.2. Решение задач нелинейного программирования методом множителей Лагранжа.

 

 

Общий вид задач нелинейного программирования

Математическая модель задачи нелинейного программиро­вания в общем виде формулируется следующим образом: найти вектор = 1, x 2, …, xn), удовлетворяющий системе ограни­чений и доставляющий экстремум (наибольшее или наименьшее зна­чение) целевой функции: L=f(x1,x2,x3,…xn), где xj переменные, j = ; L, f, gi заданные функции от n переменных, bi — фиксированные значения.

В системе ограничений, уравнения и неравенства, а также и целевая функция могут быть сколь угодной сложности.

Нелинейное программирование применяется при прогнози­ровании промышленного производства, управлении товарными ресурсами, планировании обслуживания и ремонта оборудова­ния и т.д.

Для задачи нелинейного программирования нет единого метода решения.

В зависимости от вида целевой функции и системы ограничений разработаны специальные методы решения, например, такие как:

~ методы множителей Лагранжа, ~ квадратичное и выпуклое программи­рование, ~ градиентные методы, ~ приближенные методы реше­ния, ~ графический метод. ~ т.д.  

Из нелинейного программирования наиболее разработаны задачи, в которых система ограничений линейная, а целевая функция нелинейная.

Однако даже для таких задач оптималь­ное решение может быть найдено для определенного класса це­левых функций. В отличие от задач линейного программирования, где точками экстремума являются верши­ны многогранника решений, в задачах с нелинейной целевой функцией точки могут находиться внутри многогранника, на его ребре или в вершине.

При решении задач нелинейного программирования для це­левой функции необходимо определить глобальный максимум или глобальный минимум.

Глобальный максимум функции - наибольшее значение из ло­кальных максимумов.

Глобальный минимум функции - наименьшее значение из ло­кальных минимумов.

Наличие локальных экстремумов затрудняет решение за­дач, так как большинство существующих методов нелинейного программирования не позволяет установить, является найден­ный экстремум локальным или глобальным. Поэтому имеется возможность в качестве оптимального решения принять ло­кальный экстремум, который может существенно отличаться от глобального экстремума.





Поделиться с друзьями:


Дата добавления: 2017-02-24; Мы поможем в написании ваших работ!; просмотров: 662 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент всегда отчаянный романтик! Хоть может сдать на двойку романтизм. © Эдуард А. Асадов
==> читать все изречения...

2430 - | 2175 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.