Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Расчёт крепления груза прямоугольной формы.

 

1) Параметры груза: - длина м;

- ширина м;

- высота м.

2) Расположение ЦМ от края груза по: - длине 5,0 м;

- ширине 1,5 м.

3) Высота ЦМ над опорной поверхностью 1,5 м.

4) Масса груза т;

Сила тяжести груза кН

5) Для перевозки груза используется четырёхосная платформа второго типа с характеристиками:

- грузоподъёмность 70 т;

- тележка типа ЦНИИ-Х3-0;

- база 9,72 т;

- тара 20,9 т;

- внутренняя ширина 2,77 м;

- внутренняя длина 13,30 м;

- высота ЦТ ПЛТ в порожнем состоянии – 0,8м;

- заданная расчётная скорость поезда – 100 км/ч.

 

 

6.1 Расположение груза на подвижном составе.

 

Размещение и крепление грузов на открытом подвижном составе производится в точном соответствии с ТУ. Размещение груза производится симметрично относительно продольной и поперечной осей платформы, а затем проверяется правильность его размещения и соблюдение габаритов погрузки.

Для данного груза максимальное расстояние от середины вагона до конца груза составляет 4,4 м, что меньше максимально допустимого 8,8 м.

Смещение ЦТ груза в продольном направлении от вертикальной плоскости, в которой лежит поперечная ось платформы составляет:

 

, (47)

где длина груза, м;

расстояние ЦМ от края груза по длине, м.

мм < 1215 мм

что допускается (см. табл. 2 мет. указаний).

 

Так как ЦТ груза смещён в продольном направлении, то тележки платформы нагружены неравномерно.

, (48)

, (49)

где база вагона, м.

кН

кН

кН

Разность нагрузок на правую и левую тележки составляет менее 100 кН, 39,61 кН <100кН что соответствует требованиям ТУ.

 

Максимальный момент возникает в плоскости, проходящей через поперечную ось вагона, он равен:

, (50)

, (51)

, (52)

Н/ ;

м

кНм

В данном случае при ширине груза больше 2700 мм допускаемый изгибающий момент равен 1000 кНм и больше действующего, следовательно, груз размещён в соответствии с требованиями ТУ.

Проверка габаритности погрузки производится с учётом координат наиболее выступающих точек и приложения 1 методических указаний.

- по высоте 1320+300=4320 мм;

- по ширине 3000/2=1500 мм.

Таким образом груз имеет I степень верхней негабаритности.

 

 

Проверка поперечной устойчивости вагона с грузом.

 

Проверка поперечной устойчивости вагона с грузом производится в случаях, когда высота ЦТ вагона с грузом более 2,3 м над УГР или боковая наветренная поверхность вагона с грузом более .

Высота ЦТ вагона с грузом определяется из выражения.

, (53)

где тара вагона, кН;

высота ЦТ вагона над УГР, м.

< 2,3 м

Наветренная поверхность ПЛТ с грузом.

, (54)

где площадь поверхности вагона, подверженная воздействию ветра, ;

площадь боковой поверхности груза, подверженной воздействию ветра, .

< 50

 

 

6.2 Расчёт сил действующих на груз при перевозке.

 

Продольные, поперечные и вертикальные инерционные силы, сила давления ветра и силы трения при перевозке достигают максимальных значений неодновременно. Точкой приложения продольных, поперечных, и вертикальных инерционных сил является ЦТ груза, точкой приложения равнодействующей силы ветра - геометрический центр площади наветренной поверхности.

Величина продольной инерционной силы вычисляется из выражения.

, (55)

где удельное значение продольной инерционной силы, Н/кН веса груза.

При перевозке груза с опорой на один вагон.

, (56)

где удельное значение продольной инерционной силы, соответственно для вагонов массой брутто 22 и 94 т.

н/кН

кН.

Поперечная горизонтальная инерционная сила зависит от скорости движения, типа рессорного подвешивания вагона, способа размещения груза в вагоне и определяется из выражения, V=100 км/ч.

, (57)

где удельная величина поперечной инерционной силы, н/кН;

, (58)

где н/кН, н/кН.

н/кН.

кН.

Вертикальная инерционная сила возникает вследствие колебаний вагона при движении: подпрыгивания, галопирования и боковой качки и зависит от скорости движения и типа рессорного подвешивания.

, (59)

где удельная величина вертикальной инерционной силы, н/кН, вычисляется по формуле:

, (60)

н/кН

кН

Ветровая нагрузка на боковую поверхность груза, подверженную действию ветра, определяется из выражения:

, (61)

где площадь проекции наветренной поверхности груза на продольную вертикальную плоскость, ;

500 н/ - расчётное давление ветра.

кН.

Величина силы трения, препятствующей перемещению груза в продольном направлении, при перевозке груза с опорой на один вагон определяется из выражения:

, (62)

где коэффициент трения скольжения груза по полу вагона. Для трения дерева по дереву – 0,45.

кН

Величина силы трения, препятствующей перемещению груза в поперечном направлении, при перевозке груза с опорой на один вагон с учётом вертикальной инерционной силы определяется из выражения:

, (63)

кН

 

 

6.3 Проверка условий в необходимости закрепления груза.

 

Условие устойчивости груза от поступательных перемещений вдоль вагона.

Так как 114,75<285,35 кН, то условие устойчивости в продольном направлении не обеспечивается.

Условие устойчивости груза в поперечном направлении:

, (64)

Так как 76,088 < 130,35 кН, то в поперечном направлении груз не устойчив.

 

Условие устойчивости груза от опрокидывания вдоль вагона выполняется, если фактический коэффициент устойчивости:

, (65)

где расстояние от проекции ЦТ груза на горизонтальную плоскость до ребра опрокидывания соответственно вдоль вагона, м;

высота ЦТ груза над полом вагона, м;

высота упорного бруска.

Таким образом устойчивость груза от опрокидывания в продольном направлении обеспечивается.

 

Условие устойчивости груза от опрокидывания поперёк вагона выполняется, если фактический коэффициент устойчивости:

, (66)

Устойчивость груза от опрокидывания поперёк вагона обеспечивается.

6.4 Расчёт параметров крепления груза.

 

Величина продольного и поперечного усилий, которые должны воспринимать креплением груза от поступательных перемещений.

, (67)

кН

, (68)

кН

Значения углов наклона растяжки к полу вагона, между проекцией растяжки на горизонтальную плоскость и продольную (поперечную) ось платформы определяются геометрическими строениями.

 

, h=3 м,

,

м,

таким образом, м,

, ,

, ,

.

Усилие в растяжках, возникающее от продольных инерционных сил:

, (69)

где количество растяжек, работающих одновременно в одном направлении;

угол наклона растяжки к полу вагона;

угол между проекцией растяжки на горизонтальную плоскость и продольной осями вагона.

кН;

Усилие в растяжках, возникающее от поперечных инерционных сил:

(70)

 

кН.

Выбор параметров растяжки производим по наибольшему усилию в растяжке, которое возникает при продольной инерционной силе.

Таким образом, определяем, что усилие в 44,0 кН выдержит растяжка из проволоки диаметром 8 мм в 8 нитей.

Тогда усилие, которое должны воспринимать гвозди, вбиваемые в распорные и упорные бруски, будет равно: , а потребное число гвоздей для крепления брусков к полу вагона с одной стороны груза будет равно:



<== предыдущая лекция | следующая лекция ==>
Эгоизм и альтруизм в этике | Распределение заданий по содержанию и уровням сложности
Поделиться с друзьями:


Дата добавления: 2017-02-24; Мы поможем в написании ваших работ!; просмотров: 1018 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2258 - | 2186 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.