Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Краткие теоретические сведения. Оценивание параметров генеральной совокупности




Лабораторная работа № 4

Оценивание параметров генеральной совокупности

в диалоговой системе «STADIA»

Цель работы: освоить методику оценивания точечных и интервальных параметров генеральной совокупности с помощью современных программных продуктов.

Приборы и принадлежности: Персональный компьютер.

 

Краткие теоретические сведения

Точечные оценки параметров распределения. На прак­тике все результаты измерений и случайные погрешности являют­ся величинами дискретными, т.е. величинами xi возможные зна­чения которых отделимы друг от друга и поддаются счету. При использовании дискретных случайных величин возникает задача нахождения точечных оценок параметров их функций распределе­ния на основании выборок – ряда значений хi принимаемых слу­чайной величиной х в n независимых опытах. Используемая вы­борка должна быть репрезентативной (представительной), т.е. должна достаточно хорошо представлять пропорции генеральной совокупности.

Оценка параметра называется точечной, если она выражается одним числом. Задача нахождения точечных оценок – частный случай статистической задачи нахождения оценок параметров функции распределения случайной величины на основании выбор­ки. Любая точечная оценка, вычисленная на основании опытных данных, является их функцией и поэтому сама должна представлять собой случайную величину с распределением, зависящим от распределения исходной случайной величины, в том числе от самого оцениваемого параметра и от числа опытов n.

Точечные оценки могут быть состоятельными, несмещенными и эффективными.

Состоятельной называется оценка, которая при увеличении объема выборки стремится по вероятности к ис­тинному значению числовой характеристики.

Несмещенной на­зывается оценка, математическое ожидание которой равно оце­ниваемой числовой характеристике (параметру).

Оценка называется эффективной, если ее дисперсия меньше дисперсии любой другой оценки данного параметра, т.е. наиболее эффективной счи­тают ту из нескольких возможных несмещенных оценок, которая имеет наименьшую дисперсию.

Требование несмещенности на прак­тике не всегда целесообразно, так как оценка с небольшим сме­щением и малой дисперсией может оказаться предпочтительнее несмещенной оценки с большой дисперсией. На практике не все­гда удается удовлетворить одновременно все три этих требова­ния, однако выбору оценки должен предшествовать ее критиче­ский анализ со всех перечисленных точек зрения.

Наиболее распространенным методом получения оценок явля­ется, метод наибольшего (максимального) правдоподобия, теоретически обоснованный математиком Р. Фишером, который приводит к асимптотически несмещенным и эффективным оценкам с при­ближенно нормальным распределением. Среди других методов мож­но назвать методы моментов и наименьших квадратов.

Точечной оценкой математического ожидания результата измерений является среднее арифметическое значение измеряемой величины

(1)

При любом законе распределения оно является состоятельной и несмещенной оценкой, а также наиболее эффективной по крите­рию наименьших квадратов.

Точечная оценка дисперсии, определяемая по формуле

(2)

является несмещенной и состоятельной.

Среднеквадратическое отклонение случайной величины х определяется как корень квадрат­ный из дисперсии. Соответственно его оценка может быть найдена путем извлечения корня из оценки дисперсии. Однако эта опера­ция является нелинейной процедурой, приводящей к смещенности получаемой таким образом оценки. Для исправления оценки СКО вводят поправочный множитель k(n), зависящий от числа наблю­дений n. Он изменяется от k(3)=1,13 до k(∞) = 1,03. Оценка сред­него квадратического отклонения

Полученные оценки математического ожидания и СКО являются случайными величи­нами. Это проявляется в том, что при повторениях серий из n наблюдений каждый раз будут получаться различные оценки и . Рассеяние этих оценок целесообразно оценивать с помощью СКО и Sσ. Оценка СКО среднего арифметического значения

(3)

Оценка СКО среднего квадратического отклонения

Отсюда следует, что относительная погрешность определения СКО может быть оценена как

Она зависит только от эксцесса и числа наблюдений в выборке и не зависит от СКО, т.е. той точности, с которой производятся измерения. Ввиду того, что большое число измерений проводит­ся относительно редко, погрешность определения, а может быть весьма существенной. В любом случае она больше погрешности из-за смещенности оценки, обусловленной извлечением квадрат­ного корня и устраняемой поправочным множителем k(n). В связи с этим на практике пренебрегают учетом смещенности оценки СКО отдельных наблюдений и определяют его по формуле

(4)

т.е. считают k(n)=1.

Иногда оказывается удобнее использовать следующие формулы для расчета оценок СКО отдельных наблюдений и результата измерения:

; (5)

Точечные оценки других параметров распределений использу­ются значительно реже. Оценки коэффициента асимметрии и экс­цесса находятся по формулам

; (6)

(7)

Определение рассеяния оценок коэффициента асимметрии и экс­цесса описывается различными формулами в зависимости от вида распределения.

Оценка с помощью интервалов. Рассмотренные точечные оценки параметров распределения да­ют оценку в виде числа, наиболее близкого к значению неизвест­ного параметра. Такие оценки используют только при большом числе измерений. Чем меньше объем выборки, тем легче допус­тить ошибку при выборе параметра. Для практики важно не толь­ко получить точечную оценку, но и определить интервал, называе­мый доверительным, между границами которого с заданной дове­рительной вероятностью

где q – уровень значимости; хн, xв – нижняя и верхняя границы интервала, находится истинное значение оцениваемого параметра.

В общем случае доверительные интервалы можно строить на основе неравенства Чебышева. При любом законе распределения случайной величины, обладающей моментами первых двух поряд­ков, верхняя граница вероятности попадания отклонения случай­ной величины х от центра распределения хц интервал tSx описы­вается неравенством Чебышевa

где Sх – оценка СКО распределения; t– положительное число.

Для нахождения доверительного интервала не требуется знать закон распределения результатов наблюдений, но нужно знать оцен­ку СКО. Полученные с помощью неравенства Чебышева интервалы оказываются слишком широкими для практики. Так, доверитель­ной вероятности 0,9 для многих законов распределений соответст­вует доверительный интервал 1,6Sx. Неравенство Чебышева дает в данном случае 3,16Sx. В связи с этим оно не получило широкого распространения.

В метрологической практике используют главным образом квантильные оценки доверительного интервала. Под 100P-процентным квантилем хр понимают абсциссу такой вертикальной линии, слева от которой площадь под кривой плотности распределения равна Р%. Иначе говоря, квантиль – это значение случайной величины (погрешности) с заданной доверительной вероятностью Р. Напри­мер, медиана распределения является 50%-иым квантилем х0,5.

На практике 25- и 75%-ный квантили принято называть сгиба­ми, или квантилями распределения. Между ними заключено 50% всех возможных значений случайной величины, а остальные 50% лежат вне их. Интервал значений случайной величины х между х0,05и х0,95 охватывает 90% всех ее возможных значений и называ­ется интерквантильным промежутком с 90%-ной вероятностью. Его протяженность равна d0,9= х0,95 – х0,05.

На основании такого подхода вводится понятие квантильных значений погрешности, т.е. значений погрешности с заданной до­верительной вероятностью Р – границ интервала неопределенно­сти ±ΔД = ±(хp – х1–p)/2 = ±dp/2. На его протяженности встречается Р% значений случайной величины (погрешности), а q = (1–Р)% общего их числа остаются за пределами этого интервала.

Для получения интервальной оценки нормально распределен­ной случайной величины необходимо:

• определить точечную оценку МО и СКО Sx случайной вели­чины по формулам (6.8) и (6.11) соответственно;

• выбрать доверительную вероятность Р из рекомендуемого ря­да значений 0,90; 0,95; 0,99;

• найти верхнюю хB и нижнюю хH границы в соответствии с уравнениями

и

 

полученными с учетом (6.1). Значения хн и хв определяются из таблиц значений интегральной функции распределения F(t) или функции Лапласа Ф(t).

Полученный доверительный интервал удовлетворяет условию

где n – число измеренных значений; zР – аргумент функции Ла­пласа Ф(t), отвечающей вероятности Р/2. В данном случае zр назы­вается квантильным множителем. Половина длины доверительно­го интервала называется доверительной границей погрешности результата измерений.

• центр распределения;

• начальные и центральные моменты и производные от них ко­эффициенты – математическое ожидание (МО), Среднее квадратическое отклонение(СКО), эксцесс, контрэксцесс и коэффициент асимметрии.

Понятие центра распределения. Координата центра распределения показывает положение слу­чайной величины на числовой оси и может быть найдена несколь­кими способами. Наиболее фундаментальным является центр сим­метрии, т.е. нахождение такой точки Хм на оси х, слева и справа от которой вероятности появления различных значений случай­ной величины одинаковы и равны 0,5:

 

 

Точку Хм называют медианой или 50%-ным квантилем. Для ее нахождения у распределения случайной величины должен сущест­вовать только нулевой начальный момент.

Можно определить центр распределения как центр тяжести рас­пределения, т.е. такой точки , относительно которой опрокиды­вающий момент геометрической фигуры, огибающей которой яв­ляется кривая р(х), равен нулю:

Эта точка называется математическим ожиданием. При симметричной кривой р(х) в качестве центра может ис­пользоваться абсцисса моды, т.е. максимума распределения Хм. Однако существуют распределения, у которых нет моды, например равномерное. Распределения с одним максимумом называются одномодальными, с двумя – двухмодалъными и т.д. Те из них, у которых в средней части расположен не максимум, а минимум, называются антимодальными.

Для двухмодалъных распределений применяется оценка цен­тра в виде центра сгибов:

,

где хс1, хс2 – сгибы, т.е. абсциссы точек, в которых распределение достигает своих максимумов.

Для ограниченных распределений (равномерного, трапецеи­дального и др.) применяется оценка в виде центра размаха:

где х1, х2 – первый и последний члены вариационного ряда, соот­ветствующего распределению.

Разные оценки центра имеют различную эффективность. При статистической обработке экспериментальных данных важно ис­пользовать наиболее эффективную из них, т.е. оценку, имеющую минимальную дисперсию. Это связано с тем, что погрешность в оп­ределении Хц влечет за собой неправильную оценку СКО, границ доверительного интервала, эксцесса, контрэксцесса, вида распреде­ления и др., т.е. всех последующих оценок, кроме энтропийных.





Поделиться с друзьями:


Дата добавления: 2017-02-11; Мы поможем в написании ваших работ!; просмотров: 407 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Вы никогда не пересечете океан, если не наберетесь мужества потерять берег из виду. © Христофор Колумб
==> читать все изречения...

2307 - | 2123 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.