Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Неопределенные и определенные интегралы 1 страница




МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МАРИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

НЕОПРЕДЕЛЁННЫЙ И ОПРЕДЕЛЁННЫЙ

ИНТЕГРАЛЫ

Типовой расчет

Йошкар-Ола


УДК 51.517.3 (07)

 

 

Неопределённый и определённый интегралы: Типовой расчет / Сост. Ю.А.Фомина, Л.Н.Шарафутдинова. - Йошкар-Ола: МарГТУ, 2004.- 84с.

 

 

Приведены 40 вариантов заданий, составленных в соответствии с учебным планом по разделу «Неопределённые и определённые интегралы».

Для студентов 1 курса

 

Печатается по решению

редакционно-издательского совета МарГТУ

 

 

Рецензент: заведующий кафедрой математического анализа и теории функции МарГУ, кандидат физ.-мат. наук, доцент В.П. Микка

 

 

© МарГТУ, 2004


 

Порядок выполнения и защиты типового расчета

 

1. Выполнение и защита типового расчета проводится по графику самостоятельной работы студентов.

2. Все задачи должны быть решены письменно и подробно. Нумерация задач должна совпадать с их номером в типовом расчете.

3. Во время защиты типового расчета студент должен уметь отвечать на теоретические вопросы, пояснять решения задач, решать задачи аналогичного типа.

4. Типовой расчет следует выполнять в отдельной тетради. Первая страница оформляется по следующему образцу:

  Марийский государственный технический университет   Неопределённый и определённый интегралы     ТИПОВОЙ РАСЧЕТ   студента(ки) факультета____________________________________ наименование факультета   специальности_____________________________ группы_________ наименование специальности № группы   _________________________________________________________ Ф.И.О. полностью  

 


 

Вариант 1.

 

1. Найдите неопределённые интегралы, непосредственно интегрируя:

а) ; б) .

 

2. Найдите неопределённые интегралы методом подведения под знак дифференциала:

а) ; б) .

 

3. Найдите неопределённые интегралы, используя формулу интегрирования по частям:

а) dx; б) .

 

4. Найдите неопределённые интегралы от тригонометрических функций:

а) ; б) .

 

5. Найдите неопределённые интегралы:

а) ; б) .

 

6. Найдите неопределённые интегралы от дробно-рациональных функций:

а) ; б) dx.

 

7. Найдите неопределённые интегралы, применив необходимую замену переменной:

а) ; б) .

 


 

8. Вычислите определённый интеграл:

 

a) ; б) .  

 

9. Вычислите определённый интеграл, используя формулу интегрирования по частям:

 

.

 

10. Вычислите определённый интеграл, используя указанную замену переменной:

 

, .

 

11. Вычислите несобственные интегралы либо докажите их расходимость:

 

a) ; б) .  

12. Вычислите площадь фигуры, ограниченной линиями:

а) , ;

 

б) прямыми и графиком функции

.


Вариант 2.

 

1. Найдите неопределённые интегралы, непосредственно интегрируя:

а) ; б) .

 

2. Найдите неопределённые интегралы методом подведения под знак дифференциала:

а) ; б) .

 

3. Найдите неопределённые интегралы, используя формулу интегрирования по частям:

а) ; б) .

 

4. Найдите неопределённые интегралы от тригонометрических функций:

а) ; б) .

 

5. Найдите неопределённые интегралы:

а) ; б) .

 

6. Найдите неопределённые интегралы от дробно-рациональных функций:

а) ; б) dx.

 

7. Найдите неопределённые интегралы, применив необходимую замену переменной:

а) ; б) .

 


 

8. Вычислите определённый интеграл:

 

a) ; б) .

 

9. Вычислите определённый интеграл, используя формулу интегрирования по частям:

 

.

 

10. Вычислите определённый интеграл, используя указанную замену переменной:

 

, .

 

11. Вычислите несобственные интегралы либо докажите их расходимость:

 

  а) ; б) .
     
         

12. Вычислите площадь фигуры, ограниченной линиями:

а) ,

 

б) прямыми и графиком функции

.


Вариант 3.

 

  1. Найдите неопределённые интегралы, непосредственно интегрируя:
а) ; б) .

 

  1. Найдите неопределённые интегралы методом подведения под знак дифференциала:
а) ; б) .

 

  1. Найдите неопределённые интегралы, используя формулу интегрирования по частям:
а) ; б) .

 

  1. Найдите неопределённые интегралы от тригонометрических функций:
а) ; б) .

 

  1. Найдите неопределённые интегралы:
а) ; б) .

 

  1. Найдите неопределённые интегралы от дробно-рациональных функций:
а) ; б) dx.

 

  1. Найдите неопределённые интегралы, применив необходимую замену переменной:
а) ; б) .  

 

  1. Вычислите определённый интеграл:

 

a) ; б) .

 

  1. Вычислите определённый интеграл, используя формулу интегрирования по частям:

 

.

 

  1. Вычислите определённый интеграл, используя указанную замену переменной:

 

, .

 

  1. Вычислите несобственные интегралы либо докажите их расходимость:

 

а) ; б) .
   

12. Вычислите площадь фигуры, ограниченной линиями:

а) ,

 

б) прямыми и графиком функции

.


Вариант 4.

 

  1. Найдите неопределённые интегралы, непосредственно интегрируя:
а) ; б) .

 

  1. Найдите неопределённые интегралы методом подведения под знак дифференциала:
а) ; б) .

 

  1. Найдите неопределённые интегралы, используя формулу интегрирования по частям:
а) ; б) .

 

  1. Найдите неопределённые интегралы от тригонометрических функций:
а) ; б) .

 

  1. Найдите неопределённые интегралы:
а) ; б) .

 

  1. Найдите неопределённые интегралы от дробно-рациональных функций:
а) ; б) dx.

 

  1. Найдите неопределённые интегралы, применив необходимую замену переменной:
а) ; б) .

 

  1. Вычислите определённый интеграл:

 

a) ; б) .

 

  1. Вычислите определённый интеграл, используя формулу интегрирования по частям:

 

.

 

  1. Вычислите определённый интеграл, используя указанную замену переменной:

 

, .

 

  1. Вычислите несобственные интегралы либо докажите их расходимость:

 

  а) ; б) .
     
         

12. Вычислите площадь фигуры, ограниченной линиями:

а) ,

 

б) прямыми и графиком функции

.


Вариант 5.

 

1. Найдите неопределённые интегралы, непосредственно интегрируя:

а) ; б) .

 

2. Найдите неопределённые интегралы методом подведения под знак дифференциала:

а) ; б) .

 

3. Найдите неопределённые интегралы, используя формулу интегрирования по частям:

а) ; б) .

 

4. Найдите неопределённые интегралы от тригонометрических функций:

а) ; б) .

 

5. Найдите неопределённые интегралы:

а) ; б) .

 

6. Найдите неопределённые интегралы от дробно-рациональных функций:

а) ; б) dx.

 

7. Найдите неопределённые интегралы, применив необходимую замену переменной:

а) ; б) .

 

8. Вычислите определённый интеграл:

 

a) ; б) .

 

9. Вычислите определённый интеграл, используя формулу интегрирования по частям:

 

.

 

10. Вычислите определённый интеграл, используя указанную замену переменной:

 

, .

 

11. Вычислите несобственные интегралы либо докажите их расходимость:

 

  а) ; б) .
     
         

12. Вычислите площадь фигуры, ограниченной линиями:

а) ,

 

б) прямыми и графиком функции

.


Вариант 6.

 

1. Найдите неопределённые интегралы, непосредственно интегрируя:

а) ; б) .

 

2. Найдите неопределённые интегралы методом подведения под знак дифференциала:

а) ; б) .

 

3. Найдите неопределённые интегралы, используя формулу интегрирования по частям:

а) ; б) .

 

4. Найдите неопределённые интегралы от тригонометрических функций:

а) ; б) .

 

5. Найдите неопределённые интегралы:

а) ; б) .

 

6. Найдите неопределённые интегралы от дробно-рациональных функций:

а) ; б) dx.

 

7. Найдите неопределённые интегралы, применив необходимую замену переменной:

а) ; б) .

 

8. Вычислите определённый интеграл:

 

a) ; б) .

 

9. Вычислите определённый интеграл, используя формулу интегрирования по частям:

 

.

 

10. Вычислите определённый интеграл, используя указанную замену переменной:

 

, .

 

11. Вычислите несобственные интегралы либо докажите их расходимость:

 

  а) ; б) .
     
         

12. Вычислите площадь фигуры, ограниченной линиями:

а) ,

 

б) прямыми и графиком функции

.


Вариант 7.

 

1. Найдите неопределённые интегралы, непосредственно интегрируя:

а) ; б) .

 

2. Найдите неопределённые интегралы методом подведения под знак дифференциала:

а) ; б) .

 





Поделиться с друзьями:


Дата добавления: 2017-01-28; Мы поможем в написании ваших работ!; просмотров: 756 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наглость – это ругаться с преподавателем по поводу четверки, хотя перед экзаменом уверен, что не знаешь даже на два. © Неизвестно
==> читать все изречения...

2648 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.