Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тема: Динамика поступательного движения 4 страница




 


ЗАДАНИЕ N 8 сообщить об ошибке
Тема: Динамика вращательного движения
Диск может вращаться вокруг оси, перпендикулярной плоскости диска и проходящей через его центр. В точке А прикладывают одну из сил (, , или ), лежащих в плоскости диска. Верным для моментов этих сил относительно рассматриваемой оси является соотношение …

  ,
   
   
   

 

Решение:
При вращении тела вокруг неподвижной оси момент относительно этой оси создает только одна составляющая действующей на него силы, а именно касательная к траектории точки ее приложения . Тогда момент силы относительно неподвижной оси равен: , где r – радиус-вектор точки приложения силы. В данном случае составляющая одинакова для трех сил: , и , а для силы . Кроме того, все силы приложены в одной точке. Поэтому , .

 


ЗАДАНИЕ N 9 сообщить об ошибке
Тема: Кинематика поступательного и вращательного движения
Частица из состояния покоя начала двигаться по дуге окружности радиуса с угловой скоростью, модуль которой изменяется с течением времени по закону . Отношение нормального ускорения к тангенциальному через 2 секунды равно …

   
     
     
     

 

Решение:
Нормальное ускорение частицы равно , где R – радиус кривизны траектории. Тангенциальное ускорение определяется выражением . Следовательно, отношение нормального ускорения к тангенциальному через 2 с равно .

 


ЗАДАНИЕ N 10 сообщить об ошибке
Тема: Элементы специальной теории относительности
Космический корабль летит со скоростью ( скорость света в вакууме) в системе отсчета, связанной с некоторой планетой. Один из космонавтов медленно поворачивает метровый стержень из положения 1, перпендикулярного направлению движения корабля, в положение 2, параллельное направлению движения. Длина этого стержня с точки зрения наблюдателя, находящегося на планете, …

  изменяется от 1,0 м в положении 1 до 0,6 м в положении 2
    изменяется от 1,0 м в положении 1 до 1,67 м в положении 2
    равна 1,0 м при любой его ориентации
    изменяется от 0,6 м в положении 1 до 1,0 м в положении 2

 

Решение:
Движение макроскопических тел со скоростями, соизмеримыми со скоростью света в вакууме, изучается релятивистской механикой. Одним из следствий преобразований Лоренца является так называемое Лоренцево сокращение длины, состоящее в том, что линейные размеры тела сокращаются в направлении движения: . Здесь – длина тела в системе отсчета, относительно которой тело неподвижно; – длина тела в системе отсчета, относительно которой тело движется со скоростью . При этом поперечные размеры тела не изменяются. Вычисления по приведенной формуле приводят к следующему результату: . Таким образом, длина стержня с точки зрения наблюдателя, находящегося на планете, изменяется от 1,0 м в положении 1 до 0,6 м в положении 2.


ЗАДАНИЕ N 1 сообщить об ошибке
Тема: Динамика вращательного движения

Диск радиусом 1 м, способный свободно вращаться вокруг горизонтальной оси, проходящей через точку О перпендикулярно плоскости рисунка, отклонили от вертикали на угол и отпустили. В начальный момент времени угловое ускорение диска равно _______

   
     
     
     

 

Решение:

Момент силы тяжести относительно оси, проходящей через точку О, равен , где радиус диска и плечо силы. Момент инерции диска относительно оси, проходящей через центр тяжести (точку С), равен ; а момент инерции обруча относительно оси, проходящей через точку О, найдем по теореме Штейнера: . Используя основной закон динамики вращательного движения твердого тела вокруг неподвижной оси, можем определить угловое ускорение: .

 


ЗАДАНИЕ N 2 сообщить об ошибке
Тема: Работа. Энергия
Потенциальная энергия частицы в некотором силовом поле задана функцией . Работа потенциальной силы (в Дж) по перемещению частицы из точки В (1, 1, 1) в точку С (2, 2, 2) равна …
(Функция и координаты точек заданы в единицах СИ.)

 
3

 


ЗАДАНИЕ N 3 сообщить об ошибке
Тема: Кинематика поступательного и вращательного движения
Диск катится равномерно по горизонтальной поверхности со скоростью без проскальзывания. Вектор скорости точки А, лежащей на ободе диска, ориентирован в направлении …

   
     
     
     

 

Решение:
Качение однородного кругового цилиндра (диска) по плоскости является плоским движением. Плоское движение можно представить как совокупность двух движений: поступательного, происходящего со скоростью центра масс, и вращательного вокруг оси, проходящей через этот центр. Тогда . Поскольку диск катится без проскальзывания, скорость точки диска, соприкасающейся с поверхностью, равна нулю. Отсюда следует, что . Вектор направлен по касательной к окружности в рассматриваемой точке (для точки А – в направлении 2). Тогда вектор скорости точки А ориентирован в направлении 3.

 


ЗАДАНИЕ N 4 сообщить об ошибке
Тема: Динамика поступательного движения
Автомобиль поднимается в гору по участку дуги с увеличивающейся по величине скоростью.

Равнодействующая всех сил, действующих на автомобиль, ориентирована в направлении …

 
4 |

 

Решение:
Согласно второму закону Ньютона , где равнодействующая всех сил, действующих на тело, его ускорение. Вектор ускорения удобно разложить на две составляющие: . Тангенциальное ускорение направлено по касательной к траектории в данной точке и характеризует быстроту изменения модуля скорости; нормальное ускорение направлено по нормали к траектории в данной точке (направление 3) и характеризует быстроту изменения направления скорости. При движении по криволинейной траектории 0, при движении с увеличивающейся по величине скоростью 0 и вектор ориентирован в направлении 5. Следовательно, вектор , а значит, и вектор ориентирован в направлении 4.

 


ЗАДАНИЕ N 5 сообщить об ошибке
Тема: Законы сохранения в механике
Два маленьких массивных шарика закреплены на невесомом длинном стержне на расстоянии друг от друг, как показано на рисунке:
Стержень вращается без трения в горизонтальной плоскости вокруг вертикальной оси, проходящей посередине между шариками, с угловой скоростью . Если шарики раздвинуть симметрично на расстояние , то угловая скорость будет равна …

 
   
   
   

 


ЗАДАНИЕ N 6 сообщить об ошибке
Тема: Элементы специальной теории относительности
Космический корабль летит со скоростью ( скорость света в вакууме) в системе отсчета, связанной с некоторой планетой. Один из космонавтов медленно поворачивает метровый стержень из положения 1, перпендикулярного направлению движения корабля, в положение 2, параллельное направлению движения. Длина этого стержня с точки зрения другого космонавта …

  равна 1,0 м при любой его ориентации
    изменяется от 1,0 м в положении 1 до 1,67 м в положении 2
    изменяется от 1,0 м в положении 1 до 0,6 м в положении 2
    изменяется от 0,6 м в положении 1 до 1,0 м в положении 2

 





Поделиться с друзьями:


Дата добавления: 2017-01-28; Мы поможем в написании ваших работ!; просмотров: 823 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2440 - | 2358 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.