Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Однородные дифференциальные уравнения.





ЗАДАНИЕ N 38 сообщить об ошибке
Тема: Однородные дифференциальные уравнения
Общий интеграл дифференциального уравнения имеет вид …

 

    , где
      где
      где
      где

 

Решение:
Сделаем замену Тогда и уравнение примет вид: После преобразований получим уравнение с разделяющимися переменными
или Проинтегрировав обе части, получим: где . Сделаем обратную замену:


ЗАДАНИЕ N 22 сообщить об ошибке
Тема: Однородные дифференциальные уравнения
Общий интеграл дифференциального уравнения имеет вид …

 

   
     
     
     

 

Решение:
Запишем уравнение в виде Сделаем замену
Тогда и уравнение запишется в виде
Разделим переменные: и проинтегрируем обе части последнего уравнения:
Сделаем обратную замену:


ЗАДАНИЕ N 8 сообщить об ошибке
Тема: Однородные дифференциальные уравнения
Дифференциальное уравнение заменой приводится к уравнению с разделенными переменными,
которое имеет вид …

 

   
     
     
     

 

 

ЗАДАНИЕ N 32 сообщить об ошибке
Тема: Однородные дифференциальные уравнения
Дифференциальное уравнение заменой приводится к уравнению с разделенными переменными,
которое имеет вид …

 

   
     
     
     

 

Решение:
Если то и
Тогда уравнение запишется в виде
Разделив переменные, получим:


ЗАДАНИЕ N 21 сообщить об ошибке
Тема: Однородные дифференциальные уравнения
Общее решение дифференциального уравнения имеет вид …

 

    , где
      где
      где
      где

 

Решение:
Запишем уравнение в виде Сделаем замену
Тогда и уравнение примет вид:
Разделив переменные, получим:
Проинтегрируем обе части последнего уравнения: где
Тогда Сделаем обратную замену:

 

ЗАДАНИЕ N 30 сообщить об ошибке
Тема: Однородные дифференциальные уравнения
Общий интеграл дифференциального уравнения имеет вид …

 

   
     
     
     

 

Решение:
Сделаем замену Тогда и уравнение примет вид:
Проинтегрировав обе части, получим:
Сделаем обратную замену:


ЗАДАНИЕ N 9 сообщить об ошибке
Тема: Однородные дифференциальные уравнения
Интегральные кривые уравнения имеют вид …

 

   
     
     
     

 

Решение:
Данное уравнение является однородным дифференциальным уравнением первого порядка. Сделаем замену тогда и Уравнение запишется в виде: Сократив на и разделив переменные, получим: Проинтегрируем обе части: или где . Сделаем обратную замену:


ЗАДАНИЕ N 25 сообщить об ошибке
Тема: Однородные дифференциальные уравнения
Дифференциальное уравнение заменой приводится
к уравнению с разделенными переменными, которое имеет вид …

 

   
     
     
     

 

Решение:
Если то и
Тогда уравнение
запишется в виде
После сокращения на x 4 и упрощения, получим:

 





Поделиться с друзьями:


Дата добавления: 2017-01-21; Мы поможем в написании ваших работ!; просмотров: 384 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2189 - | 2073 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.