Свойства неопределенного интеграла
В приведенных ниже формулах f и g - функции переменной x, F - первообразная функции f,
а, k, C - постоянные величины.
·
·
·
·
51. Интегрирование по частям
Если функции и дифференцируемы на множестве и, кроме того, на этом
множестве существует интеграл , то на нем существует и интеграл , причем . Действительно, если проинтегрировать формулу нахождения дифференциала произведения двух функций:
,
то можно получить следующее соотношение между первообразными от этих функций:
.
Такой способ нахождения интеграла называется интегрированием по частям. Этот способ целесообразно применять, если интеграл, стоящий в правой части проще исходного. При использовании метода интегрирования по частям задана левая часть равенства, т.е. функция и дифференциал . Таким образом, выбор функций и неоднозначен, причем не каждый способ выбора этих функций ведет к упрощению первоначального интеграла.
Замена переменных
Для упрощения подынтегральной функции и, тем самым, для нахождения интеграла часто применяется так называемая подстановка или замена переменных.
Если обозначить и сделать соответствующие преобразования в заданном подынтегральном выражении, полученный интеграл при удачном выборе функции может оказаться более простым или даже табличным.
Для некоторых типов подынтегральных функций известны такие подстановки, которые приводят к цели. Ниже будут рассматриваться многие из них.
Например:
. Если применить замену ; , то получим:
.
. Применим замену ; . В результате получим:
.
Как и в предыдущем случае, применим замену ; . В результате получим:
.
52. Для интегрирования рациональной функции , где P (x) и Q (x) - полиномы, используется следующая последовательность шагов:
Если дробь неправильная (т.е. степень P (x) больше степени Q (x)), преобразовать ее в правильную, выделив целое выражение;
Разложить знаменатель Q (x) на произведение одночленов и/или несократимых квадратичных выражений;
Разложить рациональную дробь на простейшие дроби, используя метод неопределенных коэффициентов;
Вычислить интегралы от простейших дробей.
Пример 1 | |
Вычислить интеграл . Решение. Разложим подынтегральное выражение на простейшие дроби: Сгруппируем слагаемые и приравняем коэффициенты при членах с одинаковыми степенями: Следовательно, Тогда Теперь легко вычислить исходный интеграл | |
53 Определение. Если существует конечный передел интегральной суммы (8)
- (8)
при λ→0, не зависящий от способа разбиения τn отрезка [a; b] на частичные отрезки и выбора промежуточных точек ξk, то этот предел называют определенным интегралом (или интегралом Римана) от функции f(x) на отрезке [a; b] и обозначают:
Если указанный предел существует, то функция f(x) называется интегрируемой на отрезке [a; b] (или интегрируемой по Риману). При этом f(x)dx называется подынтегральным выражением, f(x) – подынтегральной функцией, х – переменной интегрирования, a и b – соответственно нижним и верхним пределами интегрирования.
Определенный интеграл есть число, равное пределу, к которому стремится интегральная сумма, в случае, когда диаметр разбиения λ стремится к нулю.
Геометрический смысл определенного интеграла. Пусть функция y=f(x) непрерывна на отрезке [a; b] и f(x) ≥ 0. Фигура, ограниченная графиком АВ функции y=f(x), прямыми x=a, x=b и осью Ох (рис. 1), называется криволинейной трапецией.
Интегральная сумма и ее слагаемые имеют простой геометрический смысл: произведение равно площади прямоугольника с основанием и высотой , а сумма представляет собой площадь заштрихованной ступенчатой фигуры (изображенной на рис. 1). Очевидно, что эта площадь зависит от разбиения τn отрезка [a; b] на частичные отрезки и выбора точек ξk.
Чем меньше , k=1, n, тем площадь ступенчатой фигуры ближе к площади криволинейной трапеции. Следовательно, за точную площадь S криволинейной трапеции принимается предел интегральной суммы при λ→0:
Таким образом, с геометрической точки зрения определенный интеграл от неотрицательной функции численно равен площади соответствующей криволинейной трапеции.
Основные свойства определенного интеграла
Рассмотрим свойства определенного интеграла.
Если нижний и верхний пределы интегрирования равны (a=b), то интеграл равен нулю:
Это свойство следует из определения интеграла.
Если f(x)=1, то
Действительно, так как f(x)=1, то
При перестановке пределов интегрирования определенный интеграл меняет знак на противоположный:
Постоянный множитель можно выносить за знак определенного интеграла:
R.
Определенный интеграл от алгебраической суммы конечного числа интегрируемых на [a; b] функций f1(x), f2(x), …, fn(x) равен алгебраической сумме определенных интегралов от слагаемых:
6. (аддитивность определенного интеграла). Если существует интегралы и то существует также интеграл и для любых чисел a, b, c;
7. Если f(x) ≥ 0 [a; b], то
a < b.
8. (определенность определенного интеграла). Если интегрируемые функции f(x) и φ(x) удовлетворяют неравенству f(x) ≥ φ(x) [a; b], то
a >b.
9.(об оценке определенного интеграла). Если m и М – соответственно нименьшее и наибольшее значения функции f(x), непрерывной на отрезке [a; b], то
a < b.
10.(теорема о среднем). Если функция f(x) непрерывна на отрезке [a; b], то существует такая точка [a; b], что
т. е. определенный интеграл от переменной функции равен произведению значения подынтегральной функции в некоторой промежуточной точке ξ отрезка интегрирования [a; b] и длины b-a этого отрезка.
Теорема о среднем
Если функция f(x) непрерывна на отрезке [a; b], то существует такая точка [a; b], что
т. е. определенный интеграл от переменной функции равен произведению значения подынтегральной функции в некоторой промежуточной точке ξ отрезка интегрирования [a; b] и длины b-a этого отрезка.
54. Производная определенного интеграла по верхнему пределу. Формула Ньютона-Лейбница
До сих пор мы рассматривали определенный интеграл с постоянными пределами интегрирования a и b. Если оставить постоянным нижний предел интегрирования a, а верхний х изменять так, чтобы x є [a; b], то величина интеграла будет изменяться. Интеграл вида:
x є [a; b],
называется определенным интегралом с переменным верхним пределом и является функцией верхнего предела х. Здесь для удобства переменная интегрирования обозначена буквой t, а верхний предел интегрирования – буквой х.
Теорема. Производная определенного интеграла от непрерывной функции f(x) по его переменному верхнему пределу существует и равна подынтегральной функции, в которой вместо переменной интегрирования подставлено значение верхнего предела:
Формула Ньютона-Лейбница. Формула Ньютона-Лейбница дает правило вычисления определенного интеграла: значение определенного интеграла на отрезке [a; b] от непрерывной функции f(x) равно разности значений любой ее первообразной, вычисленной при x=b и x=a.
- (9)
55 Пусть функция y = f (x) определена и интегрируема на произвольном отрезке [ а, t ], т.е. функция
определена для произвольного значения t ≥ a. Несобственным интегралом (интегралом первого рода) от функции f (x) на полуинтервале [ а, +∞) называется предел
(9.1)
Если предел, стоящий в правой части равенства (9.1), существует и конечен, то несобственный интеграл называется сходящимся (к данному пределу), в противном случае — расходящимся.
Выделяют следующие две задачи:
а) исследование вопроса о сходимости заданного несобственного интеграла;
б) вычисление значения интеграла в случае, если несобственный интеграл сходится.
В некоторых случаях решения этих двух задач удается объединить.
По аналогии с (9.1) определяется несобственный интеграл на полуинтервале (-∞, b ]:
(9.2)
Определение сходимости интеграла аналогично приведенному выше.
Несобственный интеграл на интервале (-∞, +∞) определяется следующим образом
(9.3)
56. Площадь криволинейной трапеции, ограниченной кривой y=f(x) [f(x) ≥ 0], прямыми x=a и x=b и отрезками [a; b] оси Ох, вычисляется по формуле:
Площадь фигуры, ограниченной кривыми y=f1(x) и y=f2(x)[f1(x) ≤ f2(x)] и прямыми x=a и x=b, находится по формуле:
Если кривая задана параметрическими уравнениями x=x(t), y=y(t), то площадь криволинейной трапеции, ограниченной этой кривой, прямыми x=a, x=b и отрезком [a; b] оси Ох, выражается формулой:
где t1 и t2 определяются из уравнений a=x(t1), b=x(t2) [y(t) ≥ 0 при t1 ≤ t ≤ t2].
Площадь криволинейного сектора, ограниченного кривой, заданной в полярных координатах уравнением ρ=ρ(θ) и двумя полярными радиусами θ=α, θ=β (α < β), выражается интегралом:
57. Если кривая y=f(x) на отрезке [a; b] - гладкая (т. е. производная y’=f’(x) непрерывна), то длина соответствующей дуги этой кривой находится по формуле:
При параметрическом задании кривой x=x(t), y=y(t) [x(t) и y(t) – непрерывно дифференцируемые функции] длина дуги кривой, соответствующая монотонному изменению параметра t от t1 до t2, вычисляется по формуле:
Если гладкая кривая задана в полярных системах координатах уравнением ρ=ρ(θ), α ≤ θ ≤ β, то длина дуги равна:
Дифференциал длины дуги. Длина дуги кривой определяется формулой:
59. Случа́йное собы́тие — подмножество множества исходов случайного эксперимента; при многократном повторении случайного эксперимента частота наступления события служит оценкой его вероятности.
Действий
Суммой событий A и B называется событие, состоящее из всех элементарных событий, принадлежащих одному из событий A или B. Обозначается A + B.
Пример 8. Бросаем один раз игральную кость. В этом опыте пространство элементарных событий W = {w 1, w 2, w 3, w 4, w 5, w 6}, где элементарное событие w i - выпадение i очков. Событие A - выпадение четного числа очков, A = {w 2,w 4,w 6}, событие B - выпадение числа очков, большего четырех, B = {w 5, w 6}.
Событие A + B = {w 2,w 4, w 5, w 6} состоит в том, что выпало либо четное число очков, либо число очков большее четырех, т.е. произошло либо событие A, либо событие B. Очевидно, что A + B W.
Произведением событий A и B называется событие, состоящее из всех элементарных событий, принадлежащих одновременно событиям A и B. Обозначается AB.
Пример 9. Бросаем один раз игральную кость. В этом опыте пространство элементарных событий W = {w 1, w 2, w 3,w 4, w 5,w 6}, где элементарное событие w i - выпадение i очков. Событие A - выпадение четного числа очков, A = {w 2,w 4,w 6}, событие B - выпадение числа очков, большего четырех, B = {w 5, w 6}.
Событие A B состоит в том, что выпало четное число очков, большее четырех, т.е. произошли оба события, и событие A и событие B, A B = {w 6} A B W.
Разностью событий A и B называется событие, состоящее из всех элементарных событий принадлежащих A, но не принадлежащих B. Обозначается A\B.
Пример 10. Бросаем один раз игральную кость. Событие A - выпадение четного числа очков, A = {w 2,w 4,w 6}, событие B - выпадение числа очков, большего четырех, B = {w 5, w 6}. Событие A\ B = {w 2,w 4} состоит в том, что выпало четное число очков, не превышающее четырех, т.е. произошло событие A и не произошло событие B, A\B W.
Очевидно, что
A + A = A, AA = A, .
Нетрудно доказать равенства:
, (A+B) C= AC + BC.
Определения суммы и произведения событий переносятся на бесконечные последовательности событий:
, событие, состоящее из элементарных событий, каждое из которых принадлежит хотя бы одному из ;
, событие, состоящее из элементарных событий, каждое из которых принадлежит одновременно всем .