Генные (точковые) мутации - это изменения числа и/или последовательности нуклеотидов в структуре ДНК (вставки, выпадения, перемещения, замещения нуклеотидов) в пределах отдельных генов, приводящие к изменению количества или качества соответствующих белковых продуктов. Замены оснований приводят к появлению трех типов мутантных кодонов: с измененным смыслом (миссенс-мутации), с неизмененным смыслом (нейтральные мутации) и бессмысленных, или терминирующих кодонов (нонсенс-мутации).
Выделяют три группы подобных изменений. Мутации первой группы заключаются в замене одних оснований другими (около 20 % спонтанно возникающих генных изменений). Вторая группа мутаций обусловлена сдвигом рамки считывания, происходящим при изменении количества нуклеотидных пар в составе гена. Третья группа - мутации, связанные с изменением порядка нуклеотидных последовательностей в пределах гена.
Мутации по типу замены азотистых оснований происходят в силу следующих причин. Во-первых, может происходить случайное или под действием химических агентов, изменение структуры основания, уже включенного в спираль ДНК. Если такая измененная форма основания остается незамеченной ферментами репарации, то при ближайшем цикле репликации она может присоединить к себе другой нуклеотид.
Другой причиной замены оснований может быть ошибочное включение в синтезируемую цепь ДНК нуклеотида, несущего химически измененную форму основания или его аналог. Таким образом, изменение структуры ДНК по типу замены оснований происходит до или в процессе репликации первоначально в одной полинуклеотидной цепи. Если такие изменения не исправляются в ходе репарации, то при последующей репликации они становятся достоянием обеих цепей ДНК. Следствием замены одной пары комплементарных нуклеотидов на другую является образование нового триплета в нуклеотидной последовательности ДНК, отличного от предыдущего. При этом новый триплет может кодировать ту же аминокислоту (триплет-"синоним"), другую аминокислоту или не шифровать никакой аминокислоты (нонсенс-триплет). В первом случае изменений не происходит, во втором - изменяются структура и свойства соответствующего белка. В зависимости от характера и места случившейся замены специфические свойства белка изменяются в разной степени, в ряде случаев существенно. Известно, что замена нуклеотидов в одном триплете приводит в 25 % случаев к образованию триплетов-синонимов, в 2-3 % - бессмысленных триплетов, в 75-70 % - к возникновению истинных генных мутаций.
Хромосомные мутации (или аберрации) – изменения в структуре хромосом.
На хромосомном уровне организации наследственный материал обладает всеми характеристиками субстрата наследственности и изменчивости, в том числе и способностью к приобретению изменений, которые могут передаваться новому поколению. Под влиянием различных воздействий физико-химическая и морфологическая структура хромосом может изменяться. В основе изменения структуры хромосом, как правило, лежит первоначальное нарушение ее целостности - разрывы, которые, сопровождаются различными перестройками, называемые хромосомные мутации или аберрации. Разрывы хромосом происходят закономерно в ходе кроссинговера, когда они сопровождаются обменом соответствующими участками между гомологичными хромосомами. Нарушение кроссинговера, при котором хромосомы обмениваются неравноценным генетическим материалом, приводит к появлению новых групп сцепления, где отдельные участки выпадают - делеция - или удваиваются - дупликация. При таких перестройках меняется число генов в группе сцепления. Разрывы хромосом могут возникать так же под действием различных внешних факторов, чаще физических (например, ионизирующее излучение), некоторых химических соединений, вирусов. Нарушение целостности хромосом может сопровождаться поворотом ее участка, находящегося между разрывами, на 180° - инверсия. Фрагмент хромосомы, отделившийся от нее при разрыве, может прикрепиться к другой хромосоме - транслокация. Нередко две поврежденные негомологичные хромосомы взаимно обмениваются оторвавшимися участками - реципрокная транслокация. Возможно присоединение фрагмента к своей же хромосоме, но в другом месте - транспозиция. Особую категорию хромосомных мутаций представляют аберрации, связанные со слиянием или разделением хромосом, когда две негомологичные структуры объединяются в одну - робертсоновская транслокация, или одна хромосома образует две самостоятельные хромосомы. При таких мутациях не только изменяется морфология хромосом, но и изменяется их количество в кариотипе. Последнее можно рассматривать как геномную мутацию. Причиной геномных мутаций может быть также нарушение процессов, протекающих в мейозе. Нарушение расхождения бивалентов в анафазе приводит к появлению гамет с разным количеством хромосом. Оплодотворение таких гамет нормальными половыми клетками приводит к изменению общего числа хромосом в кариотипе за счет уменьшения (моносомия) или увеличения (трисомия) числа отдельных хромосом. Такие нарушения структуры генома, называют анэуплоидией. При повреждении механизма распределения гомологичных хромосом клетка остается неразделившейся, и тогда образуются диплоидные гаметы. Оплодотворение таких гамет приводит к образованию триплоидных зигот, то есть происходит увеличение числа наборов хромосом - полиплоидия. Любые мутационные изменения в наследственном материале гамет - генеративные мутации - становятся достоянием следующего поколения, если такие гаметы участвуют в оплодотворении.
Существует множество наследственных заболеваний обмена веществ. Примерами могут служить нарушения порфиринового обмена (болезнь Гюнтера, эритропоэтические протопорфирия, копропорфирия и пр). Это болезни которые проявляются после действия УФЛ поражением кожи и более глубоких тканях, повышенным содержанием пропорфинов и копропорфиринов в эритроцитах. Проявляются среди братьев и сестер одного поколения.