Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Применение первого начала термодинамики к изопроцессам.




Изохорный процесс (V = const). Диаг­рамма этого процесса (изохора) в коорди­натах р, V изображается прямой, парал­лельной оси ординат (рис. 81), где процесс 12 есть изохорное нагревание, а 13 — изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т. е.

dA=pdV = 0.

из первого начала термодинамики (dQ=dU +dA) для изохорного процесса следует, что вся теп­лота, сообщаемая газу, идет на увеличе­ние его внутренней энергии:

dQ =dU

Согласно формуле (53.4), dUm = CvdT.

Тогда для произвольной массы газа по­лучим

Изобарный процесс (р= const). Диаграмма этого процесса (изобара) в координатах р, V изображается прямой, парал­лельной оси V

 

. При изобарном процессе работа газа (см. (52.2)) при расширении объема от V 1до V 2 равна

. Если использовать уравнение (42.5) Клапейро­на — Менделеева для выбранных нами двух состояний, то

откуда

Тогда выражение (54.2) для работы изо­барного расширения примет вид

Из этого выражения вытекает физический смысл молярной газовой постоянной R: если T2-T1=1К, то для 1 моля газа R=А, т. е. R численно равна работе изо­барного расширения 1 моля идеального газа при нагревании его на 1 К.

В изобарном процессе при сообщении газу массой от количества теплоты

его внутренняя энергия возрастает на ве­личину (согласно формуле (53.4))

При этом газ совершит работу, определяе­мую выражением (54.3).

Изотермический процесс (T =const). Как уже указывалось в § 41, изотермиче­ский процесс описывается законом Бой­ля — Мариотта:

pV= const.

Диаграмма этого процесса (изотерма) в координатах р, V представляет собой гиперболу (см. рис.60), расположенную на диаграмме тем выше, чем выше темпе­ратура, при которой происходил процесс. Исходя из выражений (52.2) и (42.5) найдем работу изотермического расшире­ния газа:

Так как при T =const внутренняя энергия идеального газа не изменяется:

Так как при T =const внутренняя энергия идеального газа не изменяется:

то из первого начала термодинамики (dQ = dU+dA) следует, что для изотермиче­ского процесса

dQ=dA,

т. е. все количество теплоты, сообщаемое газу, расходуется на совершение им рабо­ты против внешних сил:

Адиабатическим называется процесс, при котором отсутствует теплообмен (dQ=0) между системой и окружающей средой. К адиабатическим процессам можно от-

нести все быстропротекающие процессы. Например, адиабатическим процессом можно считать процесс распространения звука в среде, так как скорость распро­странения звуковой волны настолько вели­ка, что обмен энергией между волной и средой произойти не успевает.

Из первого начала термодинамики (dQ=dU+dA) для адиабатического про­цесса следует, что

dA=-dU, (55.1)

т. е. внешняя работа совершается за счет изменения внутренней энергии системы.

Используя выражения (52.1) и (53.4), для произвольной массы газа перепишем уравнение (55.1) в виде

Продифференцировав уравнение состоя­ния для идеального газа pV=(m/M)RT, получим

Исключим из (55.2) и (55.3) температу­ру Т:

Разделив переменные и учитывая, что Срv =g (см. (53.8)), найдем

dp/p=-gdV/V.

Интегрируя это уравнение в пределах от р 1до р 2и соответственно от V 1до V 2, а затем потенцируя, придем к выражению

p 2 /p l=(V1/V2)g.

или

p 1vg1 = p 2vg2.

Так как состояния 1 и 2 выбраны про­извольно, то можно записать

рVg= const. Для перехода к переменным Т, V или р, Т исключим из (55.4) с помощью урав­нения Клапейрона — Менделеева

соответственно давление или объем:

Выражения (55.4) — (55.6) представ­ляют собой уравнения адиабатического процесса. В этих уравнениях безразмер­ная величина (см. (53.8) и (53.2))

называется показателем адиабаты (или коэффициентом Пуассона).

На рисунке видно, что адиабата (pVg=const) более крута, чем изотерма (pV =const). Это объясняется тем, что при адиабатическом сжатии 13 увеличение давления газа обусловлено не только уменьшением его объема, как при изотермическом сжатии, но и повышением температуры.

Вычислим работу, совершаемую газом в адиабатическом процессе. Запишем уравнение (55.2) в виде

Если газ адиабатически расширяется от объема V 1до V 2, то его температура уменьшается от T 1до T 2и работа расши­рения идеального газа

Применяя те же приемы, что и при выводе формулы (55.5), выражение (55.8) для работы при адиабатическом расшире­нии можно преобразовать к виду

Рассмотренные изохорный, изобарный, изотермический и адиабатический процес­сы имеют общую особенность — они про­исходят при постоянной теплоемкости.

Процесс, в ко­тором теплоемкость остается постоянной, называется политропным.

13 билет.

Второе начало термодинамики можно сформулиро­вать как закон возрастания энтропии зам­кнутой системы при необратимых процес­сах: любой необратимый процесс в замкну­той системе происходит так, что энтропия системы при этом возрастает.

Можно дать более краткую формули­ровку второго начала термодинамики: в процессах, происходящих в замкнутой системе, энтропия не убывает.

Укажем еще две формулировки второ­го начала термодинамики:

1) по Кельвину: невозможен круговой процесс, единственным результатом кото­рого является превращение теплоты, полу­ченной от нагревателя, в эквивалентную ей работу;

2) по Клаузиусу: невозможен круговой процесс, единственным результатом кото­рого является передача теплоты от менее нагретого тела к более нагретому.

Можно довольно просто доказать (предоставим это читателю) эквивален­тность формулировок Кельвина и Клаузи­уса. Кроме того, показано, что если в за­мкнутой системе провести воображаемый процесс, противоречащий второму началу термодинамики в формулировке Клаузиуса, то он сопровождается уменьшением энтропии. Это же доказывает эквивален­тность формулировки Клаузиуса (а следо­вательно, и Кельвина) и статистичес­кой формулировки, согласно которой энт­ропия замкнутой системы не может убы­вать.

Ве́чный дви́гатель (лат. Perpetuum Mobile) — воображаемое устройство, позволяющее получать полезную работу, большую, чем количество сообщённой ему энергии (КПД больше 100 %).

§ Вечный двигатель первого рода — устройство, способное бесконечно совершать работу без затрат топлива или других энергетических ресурсов. Согласно закону сохранения энергии, все попытки создать такой двигатель обречены на провал. Невозможность осуществления вечного двигателя первого рода постулируется в термодинамике как первое начало термодинамики.

§ Вечный двигатель второго рода — машина, которая, будучи пущена в ход, превращала бы в работу всё тепло, извлекаемое из окружающих тел. Невозможность осуществления вечного двигателя второго рода постулируется в термодинамике в качестве одной из эквивалентных формулировоквторого начала термодинамики.





Поделиться с друзьями:


Дата добавления: 2016-12-18; Мы поможем в написании ваших работ!; просмотров: 534 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2284 - | 2063 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.