Изохорный процесс (V = const). Диаграмма этого процесса (изохора) в координатах р, V изображается прямой, параллельной оси ординат (рис. 81), где процесс 1 — 2 есть изохорное нагревание, а 1 — 3 — изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т. е.
dA=pdV = 0.
из первого начала термодинамики (dQ=dU +dA) для изохорного процесса следует, что вся теплота, сообщаемая газу, идет на увеличение его внутренней энергии:
dQ =dU
Согласно формуле (53.4), dUm = CvdT.
Тогда для произвольной массы газа получим
Изобарный процесс (р= const). Диаграмма этого процесса (изобара) в координатах р, V изображается прямой, параллельной оси V
. При изобарном процессе работа газа (см. (52.2)) при расширении объема от V 1до V 2 равна
. Если использовать уравнение (42.5) Клапейрона — Менделеева для выбранных нами двух состояний, то
откуда
Тогда выражение (54.2) для работы изобарного расширения примет вид
Из этого выражения вытекает физический смысл молярной газовой постоянной R: если T2-T1=1К, то для 1 моля газа R=А, т. е. R численно равна работе изобарного расширения 1 моля идеального газа при нагревании его на 1 К.
В изобарном процессе при сообщении газу массой от количества теплоты
его внутренняя энергия возрастает на величину (согласно формуле (53.4))
При этом газ совершит работу, определяемую выражением (54.3).
Изотермический процесс (T =const). Как уже указывалось в § 41, изотермический процесс описывается законом Бойля — Мариотта:
pV= const.
Диаграмма этого процесса (изотерма) в координатах р, V представляет собой гиперболу (см. рис.60), расположенную на диаграмме тем выше, чем выше температура, при которой происходил процесс. Исходя из выражений (52.2) и (42.5) найдем работу изотермического расширения газа:
Так как при T =const внутренняя энергия идеального газа не изменяется:
Так как при T =const внутренняя энергия идеального газа не изменяется:
то из первого начала термодинамики (dQ = dU+dA) следует, что для изотермического процесса
dQ=dA,
т. е. все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил:
Адиабатическим называется процесс, при котором отсутствует теплообмен (dQ=0) между системой и окружающей средой. К адиабатическим процессам можно от-
нести все быстропротекающие процессы. Например, адиабатическим процессом можно считать процесс распространения звука в среде, так как скорость распространения звуковой волны настолько велика, что обмен энергией между волной и средой произойти не успевает.
Из первого начала термодинамики (dQ=dU+dA) для адиабатического процесса следует, что
dA=-dU, (55.1)
т. е. внешняя работа совершается за счет изменения внутренней энергии системы.
Используя выражения (52.1) и (53.4), для произвольной массы газа перепишем уравнение (55.1) в виде
Продифференцировав уравнение состояния для идеального газа pV=(m/M)RT, получим
Исключим из (55.2) и (55.3) температуру Т:
Разделив переменные и учитывая, что Ср/Сv =g (см. (53.8)), найдем
dp/p=-gdV/V.
Интегрируя это уравнение в пределах от р 1до р 2и соответственно от V 1до V 2, а затем потенцируя, придем к выражению
p 2 /p l=(V1/V2)g.
или
p 1vg1 = p 2vg2.
Так как состояния 1 и 2 выбраны произвольно, то можно записать
рVg= const. Для перехода к переменным Т, V или р, Т исключим из (55.4) с помощью уравнения Клапейрона — Менделеева
соответственно давление или объем:
Выражения (55.4) — (55.6) представляют собой уравнения адиабатического процесса. В этих уравнениях безразмерная величина (см. (53.8) и (53.2))
называется показателем адиабаты (или коэффициентом Пуассона).
На рисунке видно, что адиабата (pVg=const) более крута, чем изотерма (pV =const). Это объясняется тем, что при адиабатическом сжатии 1 — 3 увеличение давления газа обусловлено не только уменьшением его объема, как при изотермическом сжатии, но и повышением температуры.
Вычислим работу, совершаемую газом в адиабатическом процессе. Запишем уравнение (55.2) в виде
Если газ адиабатически расширяется от объема V 1до V 2, то его температура уменьшается от T 1до T 2и работа расширения идеального газа
Применяя те же приемы, что и при выводе формулы (55.5), выражение (55.8) для работы при адиабатическом расширении можно преобразовать к виду
Рассмотренные изохорный, изобарный, изотермический и адиабатический процессы имеют общую особенность — они происходят при постоянной теплоемкости.
Процесс, в котором теплоемкость остается постоянной, называется политропным.
13 билет.
Второе начало термодинамики можно сформулировать как закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимый процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает.
Можно дать более краткую формулировку второго начала термодинамики: в процессах, происходящих в замкнутой системе, энтропия не убывает.
Укажем еще две формулировки второго начала термодинамики:
1) по Кельвину: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу;
2) по Клаузиусу: невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому.
Можно довольно просто доказать (предоставим это читателю) эквивалентность формулировок Кельвина и Клаузиуса. Кроме того, показано, что если в замкнутой системе провести воображаемый процесс, противоречащий второму началу термодинамики в формулировке Клаузиуса, то он сопровождается уменьшением энтропии. Это же доказывает эквивалентность формулировки Клаузиуса (а следовательно, и Кельвина) и статистической формулировки, согласно которой энтропия замкнутой системы не может убывать.
Ве́чный дви́гатель (лат. Perpetuum Mobile) — воображаемое устройство, позволяющее получать полезную работу, большую, чем количество сообщённой ему энергии (КПД больше 100 %).
§ Вечный двигатель первого рода — устройство, способное бесконечно совершать работу без затрат топлива или других энергетических ресурсов. Согласно закону сохранения энергии, все попытки создать такой двигатель обречены на провал. Невозможность осуществления вечного двигателя первого рода постулируется в термодинамике как первое начало термодинамики.
§ Вечный двигатель второго рода — машина, которая, будучи пущена в ход, превращала бы в работу всё тепло, извлекаемое из окружающих тел. Невозможность осуществления вечного двигателя второго рода постулируется в термодинамике в качестве одной из эквивалентных формулировоквторого начала термодинамики.