Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Границы применимости линейного закона фильтрации




 

Также как и в пористых средах в трещиноватых породах линейный закон может нарушаться при больших скоростях фильтрации из-за появления значительных по величине сил инерции. При этом значения критических чисел Рейнольдса значительно зависят от шероховатости: для гладких трещин Reкр =500, а для шероховатых трещин - 0,4. Следует заметить, что если величина относительной шероховатости меньше 0.065, то её ролью в процессе фильтрации можно пренебречь.

 

 

Для трещиноватой среды выражение для числа Рейнольдса получается аналитически и равно

 

, (1.44)

 

а Reкр = 0,4.

 

 

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ФИЛЬТРАЦИИ

Аналитическое и численное исследование задач связано с применением основных законов течения в дифференциальной форме. Для процессов, происходящих в нефтегазовых пластах, характерно изменение основных параметров течения во времени. Такие процессы называются неустановившимися (нестационарными). Для получения дифференциальных уравнений движения выделяется бесконечно-малый элемент, и рассматриваются законы сохранения массы, количества движения и энергии за бесконечно малый промежуток времени. При этом используются экспериментальные соотношения, определяющие зависимость силы трения, пористости и т.д. от параметров течения. Число уравнений должно равняться числу неизвестных параметров, что даёт замкнутую систему.

Для подземной гидромеханики характерно изотермическое изменение параметров вследствие значительных величин удельной поверхности коллекторов и их теплоёмкости. Таким образом, для таких процессов можно не рассматривать уравнение энергии и ограничиваться уравнениями баланса массы (неразрывности) и движения.

Уравнение энергии необходимо рассматривать в локальных областях призабойной зоны из-за значительных перепадов давления, проявления дроссельного эффекта, а также при применении тепловых методов повышения нефтегазоотдачи.

Для замыкания системы уравнений необходимо введение замыкающих соотношений, а именно уравнений состояния флюидов и пористой среды. Кроме того, для получения однозначного решения необходимо задание граничных и начальных условий.

В большинстве случаев решение задач в подземной гидромеханике требует использования численных методов и только в сильно идеализированных случаях одномерного течения удаётся получить аналитическое решение.

 

 

Уравнения течения для пористой среды

Общая система уравнений

 

Для нестационарного процесса при отсутствии источников и стоков имеем:

1) уравнение неразрывности

; (2.1)

2) уравнение движения в форме Дарси

; (2.2)

где р*=р+zr`g,

r u=dG / dt,

G - расход массы жидкости в единицу времени через поверхность равного потенциала (массовый дебит).

В приведённой системе уравнений k=const, h=const, т.е. среда изотропна. Для анизотропной среды слоистой структуры систему координат направляют по главным осям пласта, т.е. ось z - перпендикулярна слоям, а x, y - по плоскости слоя. В такой среде чаще рассматривают фильтрацию в предельных случаях: kz=0 и kz=¥. При kz=0 - нет перетока газа через слои, а при kz=¥ - dp / dz=0, т.е. давление в каждом поперечном сечении распределяется гидростатически, а компоненты скорости, параллельные х, у, распределены равномерно по поперечному сечению потока.

Движение жидкости может быть установившимся (стационарным) и неустановившимся (нестационарным). При установившимся движении жидкости параметры потока (плотность, скорость фильтрации, пористость и т.д.) в каждой точке пористой среды постоянны и не зависят от времени. Таким образом, для установившейся фильтрации и уравнение неразрывности примет вид

, (2.3)

где ;

(a) - декартовые координаты; (b) - сферические координаты; (c) - цилиндрические координаты; в сферических координатах - угол Q определяет изменение меридианного угла, а угол j - широтного.

Для несжимаемой жидкости (r=const) уравнение (2.3) запишется в виде

 

. (2.4)

 





Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 971 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

2456 - | 2156 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.