Пористая среда
Скорость фильтрации
При исследовании фильтрационных течений удобно отвлечься от размеров пор и их формы, допустив, что флюид движется сплошной средой, заполняя весь объём пористой среды, включая пространство, занятое скелетом породы.
Предположим, что через поверхность F пористой среды протекает объёмный расход флюида
Q=`w Fп, (1.21)
где ` w - действительная средняя скорость жидкости;
Fп - площадь пор.
Площадь пор связана с полной поверхностью через просветность (соотношение 1.2 ms= Fп/F), а для неупорядоченных (изотропных) сред справедливо допущение о равенстве просветности пористости. Следовательно
Q=`w m F, (1.22)
Величина
u= `w m. (1.23)
называется скоростью фильтрации и определяет переток флюида, осреднённый по площади. Т.к. m<1, то и скорость фильтрации всегда меньше средней. Физический смысл введения скорости фильтрации заключается в том, что при этом рассматривается некоторый фиктивный поток, в котором расход через любое сечение равен реальному расходу, поля давлений фиктивного и реального потоков идентичны, а сила сопротивления фиктивного потока равна реальной. Предполагается, что скорость фильтрации непрерывно распределена по объёму и связана со средней действительной скоростью течения равенством (1.23).
1.3.1.2. Закон Дарси (линейный закон фильтрации)
В 1856г. французским инженером Дарси был установлен основной закон фильтрации - закон Дарси или линейный закон фильтрации, устанавливающий линейную связь между потерей напора Н1-Н2 и объёмным расходом жидкости Q, текущей в трубке с площадью поперечного сечения F,заполненной пористой средой (рис.1.8).
Напор для несжимаемой жидкости имеет вид ,где
z - высота положения;
р/g - пьезометрическая высота;
g - объёмный вес;
u - скорость движения жидкости.
Т.к. при фильтрации скорость обычно мала, то под напором понимается величина . Закон Дарси имеет вид:
, (1.24)
где с - коэффициент пропорциональности, называемый коэффициентом фильтрации и имеющий размерность скорости.
Рис. 1.8. Схема наклонного пласта.
Закон Дарси показывает, что между потерей напора и расходом существует линейная связь.
Запишем закон Дарси в дифференциальной форме, учитывая соотношение u=Q/F,
(1.25)
или в векторной форме
, (1.26)
где s - расстояние вдоль оси криволинейной трубки тока.
Коэффициент фильтрации с характеризует среду и жидкость одновременно, т.е. зависит от размера частиц, от их формы и степени шероховатости, пористости среды, вязкости жидкости. Этот коэффициент обычно используется в гидротехнических расчетах, где приходится иметь дело с одной жидкостью - водой. При наличии различных жидкостей, что чаще бывает в подземной гидромеханике, использовать его неудобно. Поэтому закон Дарси записывается обычно в несколько ином виде:
(1.27)
или
, (1.28)
где h - коэффициент динамической вязкости;
k - коэффициент проницаемости, характеризующий среду ;
р =g H - приведённое давление, равное истинному при z=0.
В системе СИ [k]=м2. В смешанной системе, когда [p]=кГ/см2, [h]=0.01г/см.с=1спз, [s] =см, [u]=см/с, k измеряется в дарси (1д=1мкм2=10-12м2 =10-8см2). Тысячная доля дарси называется миллидарси.
Из сравнения (1.25) и (1.28) имеем
. (1.29)
Проницаемость песчаных коллекторов обычно находится в пределах k =100-1000мд, а для глин характерны значения проницаемости в тысячные доли миллидарси.
Проницаемость определяется геометрической структурой пористой среды, т.е. размерами и формой частиц и системой их упаковки.
Имеется множество попыток теоретически установить зависимость проницаемости от этих характеристик, исходя из закона Пуазейля для ламинарного движения в трубах и Стокса для обтекания частиц при той или иной схематизованной модели пористой среды. Поскольку реальные породы не укладываются в рамки этих геометрических моделей, то теоретические расчеты проницаемости ненадёжны. Поэтому обычно проницаемость определяют опытным путём.