Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Парная регрессия на основе метода наименьших квадратов




 

Парная регрессия характеризует связь между двумя признаками: результативным и факторным. Аналитическая связь между ними описывается уравнениями:

_

прямой yx = a0 + a1*x;

_

параболы yx = a0 + a1*x + a2*x2 ;

 

гиперболы _ 1

yx = a0 + a1* -- и т.д.

x

Определить тип уравнения можно, исследуя зависимость графически, однако существуют более общие указания, позволяющие выявить уравнение связи, не прибегая к графическому изображению. Если результативный и факторный признаки возрастают одинаково, то это свидетельствует о том, что связь между ними линейная, а при обратной связи - гиперболическая. Если результативный признак увеличивается в арифметической прогрессии, а факторный значительно быстрее, то используется параболлическая или степенная регрессия.

Оценка параметров уравнений регрессии a0 и a1 (и a2 в уравнении параболы второго порядка) осуществляется методом наименьших квадратов, в основе которого лежит прежположение о независимости наблюдений исследуемой совокупности и нахождении параметров модели a0 и a1, при которых минимизируется сумма квадратов отклонений эмпирических (фактических) значений результативного признака от теоретических, полученных по выбранному уравнению регрессии:

å (yi - yt) 2 ® min.

Система нормальных уравнений для нахождения параметров линейной парной регрессии методом наименьших квадратов имеет следующий вид:

ì a0*n + a1*å t = å y

í

î a0*å t + a1*å t2 = å y*t,

где n - объем исследуемой совокупности (число единиц наблюдения).

 

В уравнениях регрессии параметр a0 показывает усредненное влияние на результативный признак неучтенных в уравнении факторных признаков, коэффициент регрессии a1 показывает, на сколько изменяется в среднем значение результативного признака при увеличении факторного на единицу собственного измерения.

 

Множественная регрессия

 

Изучение связи между тремя и более связанными между собой признаками носит название множественной (многофакторной) регрессии:

_

y1,2,…k = f (x1, x2, …, xk). (11.3.1)

 

Построение моделей множественной регрессии включает несколько этапов:

v выбор формы связи (уравнение регрессии);

v отбор факторных признаков;

v обеспечение достаточного объема совокупности.

Выбор типа уравнения затрудняется тем, что для любой формы зависимости можно выбрать целый ряд уравнений, которые в определенной степени будут описывать эти связи. Основное значение имеют линейные модели в силу простоты и логичности их экономической интерпретации.

Линейное уравнение множественной регрессии имеет вид:

_

y1,2,…k = a0 + a1*x1 + a2*x2 + … + ak*xk, (11.3.2)

_

где y1,2,…k - теоретические значения результативного признака, полученные в результате подстановки соответствующих значений факторных признаков в уравнение регрессии;

x1 x2 … xk - факторные признаки;

a0 a1 a2 …ak - параметры модели (коэффициенты регрессии).

Параметры уравнения могут быть определены графическим методом, методом наименьших квадратов и т.д.

Важным этапом построения уже выбранного уравнения множественной регрессии является отбор и последующее включение факторных признаков. С одной стороны, чем больше факторных признаков включено в уравнение, тем оно лучше описывает явление. С другой стороны, сокращение размерности модели за счет исключения второстепенных факторов способствует простоте и качеству ее реализации.

 

При построении модели регрессии возможна проблема мультиколлинеарности, под которой понимается тесная зависимость между факторными признаками, включенными в модель (rxy > 0,8).

Наличие мультиколлинеарности между признаками приводит к искажению величины параметров модели, которые имеют тенденцию к завышению, чем осложняется процесс определения наиболее существенных факторных признаков.

В качестве причин возникновения мультиколлинеарности между признаками можно выделить следующие:

Ø изучаемые факторные признаки являются характеристикой одной и той же стороны явления или процесса. Например, показатели объема производимой продукции и среднегодовой стоимости основных фондов одновременно включать в модель не рекомендуется, так как они оба характеризуют размер предприятия;

Ø факторные признаки являются составляющими элементами друг друга;

Ø факторные признаки по экономическому смыслу дублируют друг друга.

 

 





Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 430 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2475 - | 2224 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.