Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Случайные события. Вероятность события.




 

1.Случайные события. Изучение каждого явления в порядке наблюдения или производства опыта связано с осуществлением некоторого комплекса условий (испытаний). Всякий результат или исход испытания называется событием.

 

Если событие при заданных условиях может произойти или не произойти, то оно называется случайным. В том случае, когда событие должно непременно произойти, его называют достоверным, а в том случае, когда оно заведомо не может произойти – невозможным.

События называют несовместными, если каждый раз возможно появление только одного из них. События называются совместными, если в данных условиях появление одного из этих событий не исключает появление другого при том же испытании.

 

События называются противоположными, если в условиях испытания они, являясь единственными его исходами, несовместны.

Вероятность события рассматривается как мера объективной возможности появления

случайного события.

2.Классическое определение вероятности. Вероятностью события А называется отношение числа исходов m, благоприятствующих наступлению данного события А, к числу n всех исходов (несовместных, единственно возможных и равновозможных), т.е.

(1.40)

 

Вероятность любого события не может быть меньше нуля и больше единицы, т.е. Невозможному событию соответствует вероятность Р(А) = 0, а достоверному – вероятность Р(А) = 1.

 

Задача. В лотерее из 1000 билетов имеются 200 выигрышных. Вынимают наугад один билет. Чему равна вероятность того, что этот билет выигрышный?

 

Общее число различных исходов есть n = 1000. Число исходов, благоприятствующих получению выигрыша, составляет m = 200. Согласно формуле (1.40), получим Р(А) = 200/1000 = 1/5 = 0,2. ·

 

Задача. Из урны, в которой находятся 5 белых и 3 черных шара, вынимают один шар. Найти вероятность того, что шар окажется черным.

 

Обозначим событие, состоящее в появлении черного шара, через А. Общее число случаев n = 5 + 3 = 8. Число случаев m, благоприятствующих появлению события А, равно 3. По формуле (1.40) получим Р(А) = m/n = 3/8 = 0,375. ·

 

Задача. Из урны, в которой находятся 12 белых и 8 черных шаров, вынимают наудачу два шара. Какова вероятность того, что оба шара окажутся черными?

 

Обозначим событие, состоящее в появлении двух черных шаров, через А. Общее число возможных случаев n равно числу сочетаний из 20 элементов (12 + 8) по два:

Число случаев m, благоприятствующих событию А, составляет

 

По формуле (1.40) находим вероятность появления двух черных шаров:

·

 

Задача. В партии из 18 деталей находятся 4 бракованных. Наугад выбирают 5 деталей. Найти вероятность того, что из этих 5 деталей две окажутся бракованными.

Число всех равновозможных независимых исходов n равно числу сочетаний из 18 по 5, т.е.

 

Подсчитаем число исходов m, благоприятствующих событию А. Среди 5 взятых наугад деталей должно быть 3 качественных и 2 бракованных. Число способов выборки двух бракованных деталей из 4 имеющихся бракованных равно числу сочетаний из 4 по 2:

Число способов выборки трех качественных деталей из 14 имеющихся качественных равно

 

Любая группа качественных деталей может комбинироваться с любой группой бракованных деталей, Поэтому общее число комбинаций m составляет

Искомая вероятность события А равна отношению числа исходов m, благоприятствующих этому событию, к числу n всех равновозможных независимых исходов:

·

 





Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 445 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2281 - | 2079 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.