Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Необходимая численность выборки




 

После того как определен способ отбора единиц наблюдения для вы­борочной совокупности, определяют объем выборки, т.е. число единиц в выборке, которое обеспечит достоверность и надежность результатов.

Непременным условием обоснованного расчета необходимого числа наблюдений в опыте или исследовании является определение возможной ошибки, т.е. максимально допустимого отклонения результатов выбороч­ного исследования от генеральных значений.

Так, например, основным показателем, характеризующим здоровье детей изучаемых районов, выбран процент неболевших детей. По данным литературы он равен приблизительно 10. Какую предельную ошибку мож­но допустить, чтобы интервал колебания показателя был, допустим для оценки? Такую ошибку примем равной ± 5%, т.е. показатель в выборке может быть 10 + 5% и 10 - 5% (от 5 до 15%).

Математическая статистика предлагает следующую формулу для оп­ределения предельной ошибки показателя

где А - предельная ошибка показателя, р - величина показателя (для изучаемого признака), q (1-р) или (100 — р) в зависимости от того, в каких величинах выражается показатель, n - число наблюдений, t - коэффици­ент, показывающий, какова вероятность (надежность), что действительные размеры показателя не будут выходить за границы предельной ошибки. Обычно t берется равным 2, что обеспечивает высокую достоверность бу­дущего результата (95% вероятность безошибочного прогноза).

Исходя их формулы предельной ошибки, можно вывести формулу не­обходимого числа единиц наблюдения:

отсюда

 

n = t2pq
∆2

 

Вычисляем:

 

n = t2pq = 22х10х90 = 144
∆2  

 

Допуская предельную ошибку будущего показателя равной 5%, опре­деляем, что должно быть, отобрано 144 ребенка в группу наблюдения. Увеличив точность исследования, а значит, уменьшив предельную ошибку до 2%, получим:

n = t2pq = 22х10х90 = 900
∆2  

 

Если известна величина генеральной совокупности для расчета необ­ходимого числа наблюдений, используют формулу бесповторного отбора:

 

n = Nt2pq
∆2N +t2pq
n = t2s2
∆2N + t2s2

 

или

 

 

где N – численность генеральной совокупности (т.е. весь имеющийся.материал),

n - необходимое число наблюдений в выборке,

s — среднее квадратическое отклонение.

Первая формула используется для показателей, вторая для средней величины.

Когда изучаются количественные признаки (физическое развитие, длительность заболевания, содержание веществ в крови, тканях, воздухе, воде и т.д.), при расчете необходимого числа наблюдений применяют формулу предельной ошибки средней величины:

 

∆ = st
√n

отсюда

n = t2s2
∆2

 

 

Для расчета объема выборки в этом случае следует знать вариабель­ность признака (s) из предыдущих исследований или получить ее путем проведения пробных выборок, а также определить допустимую ошибку (∆).

Например, основным результативным признаком должна быть жиз­ненная емкость легких. Из предыдущих исследований известно, что ее размеры 4000 мл при s = 500 мл. Ошибка, которая может быть допущена, равна 100 мл, т.е. средняя величина будет, возможно не 4000 мл, а коле­баться в пределах ошибки (±100 мл), т.е. от 3900 до 4100 мл, тогда

 

n = t2s2 = 22х5002 = 100
∆2  

 

 

Для того чтобы можно было судить о величине жизненной емкости легких с предусмотренной ошибкой, необходимо обследовать 100 детей. Выборочный метод наблюдения - научно обоснованный прием статисти­ческого исследования. Он позволяет достаточно точно и надежно изучать явления на основе не всей совокупности, а лишь ее части.

Для массовых исследований, охватывающих большое число наблюде­ний, предварительно рекомендуется провести пробное исследование на более ограниченном материале. Пробное исследование позволяет прове­рить на практике программу наблюдения, документ регистрации, выявить организационные трудности наблюдения и тем самым будет способство­вать совершенствованию исследования.

 

РАЗДЕЛ 3





Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 398 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2397 - | 2213 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.