Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Частотные критерии устойчивости




Критерий Михайлова так же, как критерии Гурвица и Рауса, основан на анализе характеристического уравнения системы, поэтому с его помощью можно судить об устойчивости замкнутых и разомкнутых систем.

Подставим в характеристический полином вместо переменного p чисто мнимый корень, который в дальнейшем будем обозначать jw. Тогда получим функцию комплексного переменного

(1.5)

которую можно так же, как амплитудно-фазовую характеристику, представить в виде суммы действительной и мнимой частей:

(1.6)

Действительная часть содержит только четные степени переменного w:

(1.7)

а мнимая часть только нечетные:

(1.8)

Каждому фиксированному значению переменного w соответствует комплексное число, которое можно изобразить в виде вектора на комплексной плоскости. Если теперь изменять параметр w от 0 до ¥, то конец вектора опишет некоторую линию (рис.1.2, а), которая называется характеристической кривой или годографом Михайлова. По виду этой кривой можно судить об устойчивости системы.

Формулировка критерия Михайлова: автоматическая система управления, описываемая уравнением п-го порядка, устойчива, если при изменении w 0 до ¥ характеристический вектор системы повернется против часовой стрелки на угол np/2, не обращаясь при этом в нуль.

Это означает, что характеристическая кривая устойчивой системы должна при изменении w от 0 до ¥ пройти последовательно через n квадрантов. Из выражений (1.7) и (1.8) следует, что кривая всегда начинается в точке на действительной оси, удаленной от начала координат на величину an.

 

Рис. 1.2. Характеристические кривые.

Характеристические кривые, соответствующие устойчивым системам, имеют плавную спиралеобразную форму и уходят в бесконечность в том квадранте, номер которого равен порядку уравнения (рис.1.2, б.). Если характеристическая кривая проходит n квадрантов не последовательно или проходит меньшее число квадрантов, то система неустойчива (рис.1.2, в.). Если кривая F(jw) проходит через начало координат, то система находится на границе устойчивости. В практических расчетах удобно применять

следствие из критерия Михайлова: система устойчива, если действительная и мнимая части характеристической функции обращаются в нуль поочередно, т.е. если корни уравнений и перемежаются и и (рис.1.2, г.).

 

Критерий Найквиста был сформулирован американским физиком X. Найквистом в 1932 г.

Критерий Найквиста позволяет судить об устойчивости замкнутой системы по амплитудно-фазовой характеристике разомкнутого контура системы.

 

Формулировка критерия Найквиста: замкнутая автоматическая система управления устойчива, если разность между числом положительных (сверху вниз) и отрицательных (снизу вверх) переходов АФЧХ через ось абсцисс слева от точки (-1; ј 0) равна m/2, где m — число правых корней характеристического уравнения разомкнутого контура.

Если АФЧХ начинается или заканчивается на отрезке (-∞; -1), то считают, что характеристика совершает полперехода.

Для использования изложенного приема применительно к астатическим системам, которые содержат интегрирующие звенья, и амплитудно-фазовые характеристики которых начинаются в -∞, характеристику W(јω) предварительно дополняют дугой окружности бесконечно большого радиуса, длина дуги зависит от порядка астатизма. Для определения устойчивости систем с астатизмом порядка , следует дополнить АФЧХ разомкнутой системы дугой окружности бесконечно большого радиуса и затем применить критерий Найквиста.

 

Частота, при которой амплитудная характеристика А(ω) принимает значение 1, называется частотой среза и обозначается ωср. Частоту, при которой фазовый сдвиг

φ(ω) = -π, обозначают ωπ.

Пользуясь введенными обозначениями, можно записать условие нахождения системы на границе устойчивости:

(1.9)

Частота, с которой система колеблется на границе устойчивости, называется критической и обозначается ωкр.

 


Порядок выполнения работы.

1. Получить индивидуальное задание – линейную непрерывную систему третьего порядка.

2. Подобрать параметры исследуемой САУ:

2.1. Получить характеристическое уравнение системы, подставить числовые значения.

2.2. Выписать условия устойчивости по критерию Гурвица, получить зависимость Ki(Tj).

2.3. Задаться значениями Ki и Tj, при которых САУ будет устойчива.

2.4. Подставить параметры для устойчивого состояния в характеристическое уравнение. Найти корни получившегося уравнения.

2.5. Собрать схему для моделирования устойчивого переходного процесса САУ (схема системы_1).

2.6. Добавить в разомкнутый контур звено запаздывания, подобрать путем моделирования величину запаздывания так, чтобы система осталась устойчивой (схема системы_2).

3. Исследовать устойчивость системы со звеном запаздывания с помощью критерия Михайлова:

3.1. Получить действительную - и мнимую - составляющие характеристической функции для системы_2.

3.2. Построить годограф Михайлова, убедиться в устойчивости системы по виду годографа.

4. Исследовать устойчивость системы со звеном запаздывания с помощью критерия Найквиста:

4.1. Определить устойчивость разомкнутой системы_1 (третьего порядка) любым критерием (найти количество правых корней).

4.2. По виду АФЧХ разомкнутой системы_2 (со звеном запаздывания) определить устойчивость замкнутой системы_2.

 

5. Исследовать устойчивость системы со звеном запаздывания, используя алгебраические критерии:

5.1. Заменить в разомкнутом контуре звено запаздывания апериодическим, подобрать путем моделирования величину постоянной времени этого звена так, чтобы вид переходного процесса был приближен к результату п.2.6. (схема системы_3).

5.2. Получить характеристическое уравнение системы_3, подставив числовые значения.

5.3. Доказать устойчивость системы_3 критерием Гурвица.

5.4. Доказать устойчивость системы_3 критерием Рауса.

5.5. Доказать устойчивость системы_3 аналитически, используя критерий Михайлова (следствие).

 


Содержание отчета

1. На титульном листе кроме основных сведений также указывается номер варианта и номер(а) компьютера(ов), на котором(ых) проводилось моделирование.

2. Цель работы.

3. Индивидуальное задание: структурная схема, численные значения параметров.

4. Протокол выполнения работы, включая графики всех полученных характеристик и все расчеты и преобразования для схем.





Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 527 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2239 - | 2072 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.