Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


III. Системы обыкновенных дифференциальных уравнений.




Раздел 5

 

 

I. Обыкновенные дифференциальные уравнения (ДУ)

I-го порядка.

 

 

1.1. Задачи, приводящие к дифференциальным уравнениям. Определения.
Литература: , гл. XIII, §1-2, упр. 1,2,4.

1.2. Уравнения с разделяющимися переменными.
Литература: , гл. XIII, §4, упр. 9, 20-26, 35-37.

1.3. Однородные ДУ 1-го порядка и приводящиеся к ним.

Литература: , гл. XIII, §5, упр. 40-47, 55, 56, §6, упр. 48-50.

1.4. Линейные ДУ 1-го порядка и уравнение Бернулли.
Литература: , гл. XIII, §7, упр. 58-63, §8, упр. 66-69.

1.5. Уравнения в полных дифференциалах.

Литература: , гл. XIII, §9, 10, упр. 72-76, 80.

1.6. Огибающая семейства кривых. Особые решения ДУ 1-го порядка.

Литература: , гл. XIII, §11, 12.

 

 

Вопросы для самопроверки.

1. Дайте определения:
а) дифференциального уравнения 1-го порядка;
б) общего решения ДУ 1-го порядка;
в) общего интеграла ДУ 1-го порядка;
г) частного решения (интеграла) ДУ 1-го порядка.

2. Сформулируйте задачу Коши для ДУ 1-го порядка и укажите ее геометрический смысл.

3. Дайте определения:
а) интегральной кривой ДУ 1-го порядка;
б) семейства интегральных кривых ДУ, дайте геометрическое толкование ДУ 1-го порядка.

4. Сформулируйте теорему о существовании и единственности решения ДУ 1-го порядка. Что называется особым решением ДУ 1-го порядка?

5. Дайте определения ДУ:
а) с разделенными переменными;
б) с разделяющимися переменными.

Изложите метод нахождения общего решения ДУ с разделяющимися переменными. Найдите общее решение уравнения:
.

6. Дайте определение однородного ДУ 1-го порядка. С помощью какой замены переменной однородное ДУ приводится к уравнению с разделяющимися переменными? Являются ли однородными уравнения:

а) ; б) ?

С помощью какой подстановки уравнение вида при приводится к однородному?

7. Дайте определение линейного ДУ 1-го порядка: а) однородного; б) неоднородного. Изложите: а) метод Бернулли решения ЛНДУ 1-го порядка; б) метод вариации произвольной постоянной (метод Лагранжа). Является ли уравнение линейным относительно функции ?

8. Дайте определение уравнения Бернулли. Покажите, что с помощью подстановки (где z – новая функция) уравнение Бернулли преобразуется к линейному. Какие методы решения уравнения Бернулли вы знаете?

 

II. Дифференциальные уравнения высших порядков.

 

2.1. Общие понятия.

Литература: , гл. XIII, §16, упр. 117.

2.2. Уравнения, допускающие понижение порядка.

Литература: , гл. XIII, §17, упр. 118, 119, §18, упр. 120-124.

2.3. Линейные ДУ 2-го порядка.

Литература: , гл. XIII, §20,21, упр. 129-132, 140-146, §23-25, упр. 149-158, 164-167.

 

Вопросы для самопроверки.

1. Дайте определения: а) ДУ 2-го порядка; б) его общего и частного решений. Сформулируйте задачу Коши для ДУ 2-го порядка, укажите его геометрический смысл.

2. Изложите методы решений ДУ вида:
а) б) в)

3. Дайте определение: а) линейного ДУ n-го порядка (однородного и неоднородного (ЛОДУ и ЛНДУ)); б) линейно зависимых и линейно независимых функций; в) определителя Вронского; г) фундаментальной системы решений.
Сформулируйте условия линейной независимости решений ЛОДУ. Исследуйте на линейную независимость следующие системы функций: 1) х; lnx; 2) ; ; 3) х; х2.
Сформулируйте необходимое условие линейной зависимости системы функций.

4. Сформулируйте терему о структуре общего решения: а) ЛОДУ; б) ЛНДУ.

Докажите, что сумма частных решений уравнений и является решением уравнения .

5. Изложите метод Лагранжа вариации произвольных постоянных.

6. Выведите формулу для общего решения линейного однородного ДУ 2 порядка с постоянными коэффициентами в случае действительных различных корней характеристического уравнения.

7. Изложите правило нахождения частного решения линейного ДУ 2 порядка с постоянными коэффициентами и правой частью вида: а) , где - многочлен степени ; б) .

 

III. Системы обыкновенных дифференциальных уравнений.

 

Литература: гл. ХIII §29 упр. 180, §30 упр. 185, 186, 188, гл.ХХI §17 упр. 14.


Вопросы для самопроверки.

1. Дайте определение: а) нормальной системы ДУ 1 порядка; б) однородной системы в нормальной форме. Сформулируйте задачу Коши для этой системы.

2. Изложите метод исключения решения нормальной системы ДУ 1 порядка.

3. Изложите метод нахождения общего решения нормальной системы 2-х линейных однородных ДУ с постоянными коэффициентами в случае простых корней характеристического уравнения.

4. Запишите в матричной форме нормальную систему и решение нормальной системы 2-х линейных однородных ДУ с постоянными коэффициентами.

Контрольная работа

 





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 775 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2230 - | 2117 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.