Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Выпуклость, вогнутость, точки перегиба графика функции.




Напомним некоторые понятия.

Функция называется выпуклой (вогнутой) на некотором интервале, если ее график лежит ниже (выше) касательной, проведенной в любой точке этого интервала.

Сформулируем достаточные условия. Если вторая производ­ная функции отрицательна (положительна) на интервале, то данная функция является выпуклой (вогнутой) на этом интервале.

Точкой перегиба называется такая точка графика, в которой существует касательная, и в окрестности которой график функции лежит по разные стороны касательной. Точка перегиба отделяет выпуклую часть графика от вогнутой.

Достаточные условия точки перегиба формулируются следующим образом. Если в некоторой точке определена первая производная и при переходе через эту точку вторая производная меняет свой знак, то такая точка является абсциссой точки перегиба.

 

Находим вторую производную.

= = .

Находим нули и точки разрыва второй производной, интервалы знакопостоянства второй производной. Определяем интервалы выпуклости и вогнутости функции.

Вторая производная равна нулю только в одной точке: х=0.

Вторая производная имеет точку разрыва в точках: х=-1, х=1.

Как и в предыдущем случае определяем интервалы знакопостоянства, и по знаку второй производной делаем вывод о выпуклости или вогнутости функции. Результаты удобно свести в таблицу. В таблице выпуклость функции будем обозначать символическим знаком Ç, вогнутость знаком È.

 

х (-¥;-1) (-1;0) (0;1) (1;+ ¥)
у¢¢ + - + -
у È Ç È Ç

 

Определим точки перегиба.

Вторая производная меняет знак в точках: х=-1; х=0; х=1.

Однако в точках х=-1 и х=1 функция не определена. Поэтому точкой перегиба является единственная точка х=0. Значение функции в этой точке у(0)=0.

С учетом исследования на выпуклость и вогнутость подправляем полученный ранее график плавной кривой. Таким образом, получаем окончательный вид графика функции.

В заключение заметим, что полученный график является лишь сжатой и наглядной формой сводки результатов исследования функции. Этот график можно еще уточнять. В тоже время, найденные асимптоты позволяют судить о поведении графика за пределами области изображения на приведенном рисунке.

 

Задача.

Методами дифференциального исчисления провести полное исследование функции и построить ее график: .

Область определения функции.

Функция определена при x>0.

 

Четность, нечетность функции.

Поскольку функция не определена при x 0, то данная функция является функцией общего вида.

 





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 704 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Человек, которым вам суждено стать – это только тот человек, которым вы сами решите стать. © Ральф Уолдо Эмерсон
==> читать все изречения...

2310 - | 2166 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.