Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Настройки для предотвращения зацикливания




По нажатию кнопки Параметры доступно окно с параметрами поиска решения:

В частности, задано ограничение на время исполнения алгоритма и на число итераций (повторений) цикла во избежание зацикливания, при необходимости длительных вычислений можно выставить значения до 32767. Если алгоритм впал в бесконечный цикл, то есть транспортная задача вырожденная, то можно исправить ситуацию, прибавив к объемам груза у потребителей в исходной задаче небольшие числа, такие как 0.0001. Чтобы при этом задача не оказалась разбалансированной, сумму этих небольших чисел надо прибавить к объему груза одного из поставщиков.

Итоговое решение

Общая стоимость транспортировки содержится в отмеченной красным цветом ячейке «Целевая функция». Чем меньше это значение, тем меньше будет затрачено денег на перевозку всего груза.

 

Пример решения транспортной задачи в среде MS Excel

Задача. Пусть производство продукции осуществляется на 4-х предприятиях А1, А2, А3, А4 а затем развозится в 5 пунктов потребления этой продукции B1, B2, B3, B4, B5. На предприятиях Ai (i = 1, 2, 3, 4) продукция находится соответственно в количествах ai (условных единиц). В пункты Bj (j = 1, 2, 3, 4,5) требуется доставить bj единиц продукции. Стоимость перевозки единицы груза (с учетом расстояний) из Ai в Bj определена матрицей .
Предприятия могут выпускать в день 235, 175, 185 и 175 единиц продукции. Пункты потребления готовы принимать ежедневно 125, 160, 60, 250 и 175 единиц продукции. Стоимость перевозки единицы продукции (в у. е.) с предприятий в пункты потребления приведена в таблице.


Требуется минимизировать суммарные транспортные расходы по перевозке продукции.

Решение.
Необходимо выполнить следующее:
1. Установить, является ли модель транспортной задачи, заданная таблицей, сбалансированной.
2. Разработать математическую модель задачи.
3. Найти минимальную стоимость перевозок, используя надстройку «Поиск решения» в среде MS Excel.

Решение.

1. Выполним проверку сбалансированности математической модели задачи. Модель является сбалансированной, так как суммарный объем производимой продукции в день равен суммарному объему потребности в ней:

235+175+185+175=125+160+60+250+175

(При решении этой задачи не учитываются издержки, связанные со складированием и недопоставкой продукции).

 



2. Приступим к построению математической модели поставленной задачи. Неизвестными будем считать объемы перевозок.
Пусть х ij – объем перевозок с i -го пункта поставки в j -й пункт потребления. Суммарные транспортные расходы – это функция , где с ij – стоимость перевозки единицы продукции с i -го предприятия в j -й пункт потребления .

Неизвестные в этой задаче должны удовлетворять следующим ограничениям:
• Объемы перевозок не могут быть отрицательными, т. е. ;
• Поскольку модель сбалансирована, то вся продукция должна быть вывезена с предприятий, а потребности всех пунктов потребления должны быть полностью удовлетворены, т. е. и .

Итак, имеем следующую задачу ЛП:
найти минимум функции:
при ограничениях:


, ,

3. Приступаем к решению задачи на компьютере.
3.1. Откроем новый рабочий лист Excel.
3.2. В ячейки B3:F6 стоимость перевозок единицы груза.
3.3. В ячейках B16:F16 укажем формулы для расчета суммарной потребности продукции для j -го пункта, в ячейках G12:G15 – формулы суммарного объема производства i -го предприятия.

3.4. В ячейки B18:F18 заносим значения потребности продукции соответствующего пункта потребления, в ячейки H12:H15 заносим значения объема производства соответствующего предприятия.
3.5. В ячейку B20 занесем формулу целевой функции.
3.6. Выполним команду Сервис → Поиск решения. Откроется диалоговое окно Поиск решения. Если такой команды во вкладке Сервис нет, то следует подключить эту надстройку перейдя по Сервис → Надстройки, и поставив галочку напротив нужной, т.е. Поиск решения.
3.7. В поле Установить целевую ячейку указываем ячейку, содержащую оптимизируемое значение. Установим переключатель Равный в положение минимальному значению.
3.8. В поле Изменяя ячейки мышью зададим диапазон подбираемых параметров $B$12:$F$15.
3.9. В поле Ограничения введем необходимые ограничения и нажмем на кнопку Добавить, затем Выполнить.

В результате получится оптимальный набор переменных при данных ограничениях:

Оптимальность решения можно проверить, экспериментируя со значениями ячеек $B$12:$F$15.

 





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 417 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

3100 - | 3040 -


© 2015-2026 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.