Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Обратная функция. Сложная функция.




Если поменять ролями аргумент и функцию, то x станет функцией от y. В этом случае говорят о новой функции, называемой обратной функцией.

Сложная функция функция от функции. Если z – функция от у, т.е. z (y), а у, в свою очередь, – функция от х, т.е. у (х), то функция f (x) = z (y(x)) называется сложной функцией (или композицией, или суперпозицией функций) от х.

 

4. Определение предела функции в точке на языке « ». Понятие односторонних пределов. Формулировка теоремы oсуществовании предела функцииf(х) в точке .

называется предел функции f(x) при , если для любого , что при всех и

Односторо́ннийпреде́л в математическом анализе — предел числовой функции, подразумевающий «приближение» к предельной точке с одной стороны. Такие пределы называют соответственно левосторо́ннимпреде́лом (или преде́ломсле́ва) и правосторо́ннимпреде́лом (преде́ломспра́ва).

Для того чтобы функция f: E → R имела в точке x0 конечный предел, необходимо и достаточно, чтобы функция f удовлетворяла в точке x0 условию Коши.

Будем говорить, что функция f: E → R удовлетворяет в точке x0 (x0 — предельная точка множества E) условию Коши, если

 

Определение предела функции на бесконечности.

называется предел функции f(x) при , если для любого найдётся ,что для всех выполняется неравенство

Теорема о сумме, разности, произведении и частном двух функций, имеющих пределы в точке.

Пусть функции f(x) и g(x) имеют пределы при одной и той же базе B:

Тогда функция h(x)=f(x)+g(x) также имеет предел при базе B, и этот предел L равен сумме пределов слагаемых:

Разность функций

Пусть функции f(x) и g(x) имеют пределы при одной и той же базе B:

Тогда функция h(x)=f(x) g(x) также имеет предел при базе B, и этот предел L равен произведению пределов сомножителей:

Пусть при одной и той же базе B существуют пределы и , причём . Тогда функция определена на некотором окончании базы B, существует предел , и , то есть предел отношения равен отношению пределов числителя и знаменателя.

Теорема о пределе функции, заключенной между двумя функциями, имеющими один и тот же предел.

Если функция f(x) заключена между двумя функциями g(x) и p(x), имеющими один и тот же предел, то она стремится к этому же пределу.

Определение бесконечно малой функции. Теорема о сумме и произведении конечного числа бесконечно малых функций, а также о произведении бесконечно малой функции на ограниченную функцию.

Функция называется бесконечно малой при , если

Сумма и произведение конечного числа бесконечно малой функции есть функция бесконечно малая.

Произведение бесконечно малой функции на ограниченную есть функция бесконечно малая.

 

9. Теорема о необходимом и достаточном условиях выполнения равенства с использованиемпонятия бесконечно малой функции. Бесконечно большие функции и их свойства.

Если f(x) имеет предел, то её можно представить как сумму постоянной и бесконечно малой функции.

Функция называется бесконечно большой при , если предел этой функции

Сумма и произведение бесконечно больших функций есть функция бесконечно большая.

Сумма бесконечно большой функции и ограниченой есть функция бесконечно большая

Произведение бесконечно большой функции на есть функция бесконечно большая.

 





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 3311 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Стремитесь не к успеху, а к ценностям, которые он дает © Альберт Эйнштейн
==> читать все изречения...

2175 - | 2132 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.