Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Произвольная функция распределения.




 

Время одного из устройств описывается произвольной функцией распределения (например ОП), а время другого - экспоненциальным законом (ЦП). Если наблюдать за системой в любой момент времени t, то время выборки команды из ОП зависит от того, сколько она этим уже занималась. Существует прием, который позволяет решать такие системы, который заключается в том, что мы наблюдаем за системой не в любой малый интервал времени (Dt), а в «специальный». В качестве «специального» будем считать время, непосредственно перед появлением команды из ОП. Для описания системы введем вероятность Рi - вероятность того, что в БП+ЦП находиться i команд в момент времени перед появлением очередной из ОП и qi - вероятность того, что за время выборки одной команды ОП ЦП выполнит ровно i команд. Следовательно поведение системы может быть описано с помощью матрицы переходных вероятностей.

Номер столбца - состояние системы после завершения работы ОП и номер строки - состояние системы до появления команды из ОП. Предположим система находится в состоянии 0. Из этого состояния можно попасть только в состояние 0 или 1 с вероятностями 1-q0 и q0 соответственно. Если система находиться в состоянии 1, то из него она может попасть в состояние или 0, или 1 или 2 с вероятностями 1-q0-q1 и q1 и q0 соответственно и т.д.

При i=n+1 команда, которая должна быть считана из ОП не может поступить в БП, следовательно происходит блокировка работы ОП, при этом сама команда останется в ОП. После выполнения одной команды ЦП, система перейдет в состояние n, следовательно к таблице надо приписать еще одну строку:

Время блокировки равно времени выполнения, которое осталось для обслуживания команды в ЦП. Время пребывания системы в i-ом (i=0,1,2,...,n) равно времени выполнения одной команды ОП. Время пребывания системы в состоянии n+1 равно времени выполнения одной команды ОП плюс одной команды в ЦП.

Среднее время выполнения одной команды системой:

, где ТОР - среднее время выборки одной команды ОП, а 1/m - среднее время выполнения одной команды в ЦП.

Необходимо определить Рn+1, если qi известны. Для этого решим систему:

В этой системе одно уравнение линейно зависимо, следовательно надо отбросить любое уравнение и добавить уравнение нормировки.

 

Лекция №9.

 

Необходимо вычислить qi. Время выборки команды из ОП является случайной величиной, подчиняющейся произвольной функции распределения F(t). Пусть время выборки одной команды равно t. Разобьем это время на m одинаковых интервалов по Dt (Dt*m=t). Вероятность того, что за время Dt будет выполнена ровно одна команда в условиях экспоненциального закона распределения, равна: . Вероятность того, что за время t выполнится ровно i команд, равна:

 





Поделиться с друзьями:


Дата добавления: 2016-12-04; Мы поможем в написании ваших работ!; просмотров: 288 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Вы никогда не пересечете океан, если не наберетесь мужества потерять берег из виду. © Христофор Колумб
==> читать все изречения...

2309 - | 2124 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.